
SAFETY STANDARD FOR NON-MEDICAL X-RAY AND SEALED GAMMA-RAY SOURCES

Part I. General

Handbook 93

U.S. Department of Commerce National Bureau of Standards

U.S. DEPARTMENT OF COMMERCE

Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

Safety Standard For Non-Medical X-Ray and Sealed Gamma-Ray Sources

Part I. General

Subcommittee 1, General Provisions and Methods and Materials Protection, of the ASA Z54 Sectional Committee

> Under the Sponsorship of the National Bureau of Standards

Approved July 1, 1963 as American Standard, by the American Standards Association

(ASA designation Z54.1-1963, UDC 614.898:537.531)

National Bureau of Standards Handbook 93

Issued January 3, 1964

Reprinted April 1966 with corrections

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 - Price 30 cents

Notice

THE FOLLOWING CORRECTIONS HAVE BEEN MADE IN THIS REPRINTING

Page 26, Figure 5 has been completely replaced with a new figure. The legend remains the same.

Page 27, Figure 6a has been completely replaced with a new figure. The legend remains the same.

Page 43, Footnote "d" has been added to the table.

Page 44, Footnote "e" has been added to the table.

Page 52, Figure 19 has been completely replaced with a new figure. A new paragraph has been added to the legend.

Library of Congress Catalog Card Number: 63-60096

Foreword

X-ray and sealed gamma-ray sources are used extensively in industry for the inspection, testing, and analysis of a wide variety of objects and materials. X radiation is also emitted as an unwanted by-product from devices such as electron tubes operating at potentials as low as 10 kv. It is therefore essential that adequate measures be taken to protect persons who work with or are near such radiation sources, as well as the general public, against excessive exposure to the radiation.

The present Handbook provides recommended safety standards developed for this field by Sectional Committee Z54, "Industrial Use of X-Rays and Radiation," of the American Standards Association, under the sponsorship of the National Bureau of Standards. Its text has been approved by ASA as an American Standard. In 1946 the Committee issued American War Standard Z54.1, "Safety Code for the Industrial Use of X-Rays." The present Handbook is a revision of a part of this standard.

The National Bureau of Standards is authorized by the Congress to cooperate with other governmental agencies and private organizations in the establishment of standard practices. The work of ASA Sectional Committee Z54 is an outstanding example of such cooperation. The Bureau is pleased to have the continuing opportunity to increase the usefulness of NBS-sponsored American Standards by pub-

lishing them as NBS Handbooks.

This Handbook presents basic protection recommendations pertaining to x- and sealed gamma-ray sources for non-medical applications. Subsequent publications of other subcommittees will present recommendations relating to specific types of x- and gamma-ray sources or to special problems. Their recommendations will supplement these basic recommendations to achieve the same standard of protection, through special means, for the particular types or uses of sources.

A. V. Astin, Director.

Preface

Standards for maximum permissible exposure to ionizing radiation are established by the National Committee on Radiation Protection and Measurement, and by the International Commission on Radiological Protection. The American Standards Association Z54 Sectional Committee utilizes these basic standards and other appropriate data applicable to non-medical radiation protection problems in the formulation of safety standards. Such data include the recommendations of the Federal Radiation Council for the guidance of Federal Agencies as approved by the President.

The scope and membership of the Z54 Sectional Committee at the time of the action taken on this Standard were as follows:

Scope:

Safety standards for the manufacture, installation, operation, use, and maintenance of industrial equipment which may give off radiations from radioactive materials or x-rays.

Membership:

Membership:
Chairman, Scott W. Smith, National Bureau of Standards
Secretary, Renry G. Lamb. American Standards Association
American College of Radiology
Morgan, F. O. Coe,*
R. R. Newell.*
American Conference of Government In-
dustrial Hygienists D. E. VanFarowe,
D. A. Holaday.*
American Crystallographic Association W. Parrish.
American Industrial Hygiene Association. H. W. Speicher, C. R.
Williams.*
American Institute of Electrical Engineers. G. E. Walter.
American Iron & Steel Institute J. W. Miller, L.
Teplow.*
American Petroleum Institute L. C. Roess, J. D.
Manney.*
American Public Health Association J. Lieberman.
American Roentgen Ray Society W. B. Seaman.
American Society of Mechanical Engineers N. L. Mochel.
American Society of Safety Engineers A. N. Chapman
American Welding Society A. Gobus.
Association of Casualty and Surety Com-
panies W. M. Pierce, V. O.
Bohn.*
Atomic Industrial Forum
Conference of State and Provincial Health
Authorities of North America F. M. Foote, J. J.
Electronic Industries Association J. T. Brothers, N. Anton.*
Health Physics Society
in Mermagen,

Industrial Medical Association.	F. Borrelli.
International Association of Government	
Labor Officials	M. Kleinfeld, O.
	Kooyman.*
International Association of Machinists.	J. G. Eichhorn.
Tains Clostron Device I nomeering Council.	C. Y. Bartholomew.
National Association of Mutual Casualty	
Companies	C. R. Williams, W. E.
Companies	Shoemaker.*
National Bureau of Standards	S. W. Smith.
National Safety Council	H. W. Speicher, J. T.
National Burety Council-	Siedlecki.*
Radiological Society of North America	H. W. Jacox.
Society for Non-Destructive Testing.	
Society for Non-Destrictive Testing	
Underwriters' Laboratories, Inc.	Schall.*
Commission	
U.S. Atomic Energy Commission.	
U.S. Department of Labor, Bureau of	J. P. O'Neill.
Labor Standards	
U.S. Department of the Navy, Bureau of	W. O. Pischnotte.
Medicine and Surgery	
U.S. Department of the Navy, Bureau of	E. L. Criscuolo, J. C.
Naval Weapons	Johnston.*
T\	
U.S. Department of the Navy, Bureau o	C I Eroor
Ships. Code 708C	. C. H. Frear.
U.S. Public Health Service	- E. E. Water
Members-at-large	. U. B. braestrup, U.
	Ferlazzo.

Nine working subcommittees have been established. The reports of the subcommittees are approved by the main committee before publication. The subcommittees are as follows:

1. General Provisions and Methods and Materials of Protection

Health Provisions and Monitoring
 X-ray Protection for 2,000-ky Installations and Lower
 X-ray Protection for Installations Above 2,000 ky

5. Gamma-Ray Sources for Industrial Applications

Electrical and Fire Protection

7. X-ray Diffraction, Fluorescence Analysis and Microradiography

8. Sealed Beta-Ray Sources

9. Contamination Levels of Industrial Materials

The present Handbook was prepared by the Subcommittee 1. General Provisions and Methods and Materials of Protection. Its membership is as follows: C. B. Braestrup, Chairman; C. E. CONER, R. H. DUGUID, and the chairmen of the other subcommittees.

The classification of installations as Exempt, Enclosed, and Open Protective Installations is made in recognition of the fact that some installations may economically be made independent of limitations on operating procedures, while the use, size, and arrangement of others place a practical limit on the amount of built-in protection that can be provided economically. The classification is an indication of the degree of personnel control required to achieve protection.

Many of the shielding data of this Handbook have been taken from National Bureau of Standards Handbook 73. Protection Against Radiations From Sealed Gamma Sources. and Handbook 76, Medical X-Ray Protection Up to Three Million Volts. This Handbook has also drawn freely from other sources such as Radiation Protection by C. B. Braestrup and H. O. Wyckoff (Chas. C Thomas, Publisher) and Manual of Industrial Radiation Protection Part II. Model Code of Safety Regulations (International Labour Office, Geneva 1959).

SCOTT W. SMITH. Chairman. ASA Z54 Sectional Committee.

^{*}Alternate.

Contents

_	
F	preword
Pr	·eface
1.	Scope Classification of protective installations
2.	Classification of protective installations
	2.1. Exempt protective installation
	2.2 Enclosed protective installation
	2.3. Open protective installation
3.	2.3. Open protective installation Selection of class of protective installation
	3.1. Exempt protective installation
	3.2. Enclosed protective installation
	3 3 Open protective installation
4.	Plans for radiation installations.
	4.1. Review by qualified expert
	4.2. Information to be supplied to expert.
	4.3 Approval of plans by expert
	4.3. Approval of plans by expert 4.4. Effect of distance on shielding requirements
	4.5. Direction of useful beam
	4.6. Cross section of beam
	4.7. Multiple sources of radiation
	4.8. Radiation energy, output, and workload
	4.9. Shielding for films and low level counting rooms
5	Structural details of protective barriers
Ο,	5.1 Quality of protective material
	5.1. Quality of protective material
	5.2. Lead barriers
	5.3. Joints between different materials
	Figure 1. Wall joints
	Figure 2. Door baffles
	5.4. Shielding for openings in protective barriers
	5.5. General protection requirements for doors into pro-
c	tected areas.
6.	Radiation protection surveys
	0.1. Survey of new installations
	0.2. Unanges in existing installations.
	5.3. Report of radiation protection survey
	6.4. Elimination of hazards
	b.5. Retention of survey reports
_	0.0. Radiation protection survey procedures
7.	Operating procedures 7.1. Restrictions according to classification
	7.1. Restrictions according to classification
	7.2. Control of personnel
	7.3. Radiation safety instructions
	7.4. Personnel monitoring
Ap	pendix A. Definitions pendix B. Maximum permissible dose equivalent values
Ap	pendix B. Maximum permissible dose equivalent values
	(table 1)
App	(table 1) pendix C. Occupancy and use factors (tables 2 and 3)
٩pi	pendix 1). Determination of gamma-ray protective barrier
	thicknesses
	Table 4. Gamma-ray sources
	Table 5. Cobalt 60 shielding for controlled
	grass
	areas
	areas areas
	areasTable 7. Relation between distance and source
	and it iteration between distance and source

Appendix D.	Table 8. Protection requirements for gamma-	2
	ray sources Figure 3. Transmission through concrete for	2
	gamma rays	ئە
	ravs	2
	Figure 5. Transmission through lead for gamma sources	2
	Figure 6. Transmission through concrete and lead for cobalt 60 scattered radia-	
	tion	-
	lead for cesium 137 scattered	,
	radiationFigure 8. Concrete shielding for radium	
	Figure 9. Iron shielding for radium	:
	Figure 10 Lead shielding for radium	
	Figure 11. Concrete shielding for cobalt 60	
	Figure 12. Iron shielding for cobalt 60 Figure 13. Lead shielding for cobalt 60	
	Figure 14. Concrete shielding for cesium 137	
	Figure 15. Iron shielding for cesium 137	
	Figure 16. Lead shielding for cesium 137	
Appendix E.	Tables of general x-ray information————————————————————————————————————	
	Table 9. Distance protection for controlled areas	
	Table 10. Distance protection for environs	
	Table 11. Shielding for radiographic film	
	Table 12. Half-value layer	
	Table 13. Secondary barriers for leakage radiation	
	Table 14. Densities of commercial building	
	materialsTable 15. Commercial lead sheets	
Appendix F.	X-ray shielding tables for controlled areas and	
Appendix r.	environs	
	Table 16. X rays to 300 kv, lead and concrete shielding	
	Table 17. 1-My x-ray shielding, lead and	
	concrete	
	Table 18. 2-My x-ray shielding, lead and con-	
	Table 19. Multimegavolt x-ray shielding, con- crete	
	Table 20. Multimegavolt x-ray shielding, lead.	
Appendix G.	Determination of x-ray protective barriers	
• •	Figure 17. Attenuation in lead for 50- to 200-	
	ky x rays	
	Figure 19. Attenuation in lead for 250- to 400-	
	ky x rays	
	Figure 20, Attenuation in lead for 500- to	
	3000-kv x rays Figure 21. Attenuation in concrete for 500- to	
	3000-kv x rays	
Appendix H.	References	
1 1		

Safety Standard for the Non-Medical Use of X-Ray and Sealed Gamma-Ray Sources

1. Scope

1.1. This Handbook is intended to serve as a guide toward the safe use of x-ray and sealed gamma-ray sources for non-medical purposes and of equipment emitting x rays serving no useful purpose. Its main objectives are to reduce needless exposure of persons to radiation and to ensure that no one receives more than the maximum permissible dose. These objectives are achieved by the use of appropriate equipment, ample structural shielding and most important, safe operating procedures.

1.2. Those recommendations containing the word "shall" identify requirements that are necessary to meet the standards of protection of this Handbook. Those using the word "should" indicate advisory recommendations that should be

applied when practicable.

2. Classification of Protective Installations

Basically any installation which is so constructed and operated as to meet the Maximum Permissible Dose Equivalent requirements is acceptable. However, if this were the only requisite, the assumptions as to the use of the equipment and degree of occupancy might be subject to widely divergent interpretations. In order to ensure certain minimum standards of protection without needless expenditures, it has been found advisable to divide installations into different classes. Their basic requirements are given below. (See paragraph 3 for selection of class, 6.6 for specific tests, and 7 for operating limitations.)

2.1. Exempt Protective Installation. An installation shall be so classified when it conforms with all of the following

requirements:

2.1.1. The source and all objects exposed thereto are within a permanent enclosure, within which no person is permitted to remain during irradiation.

2.1.2. Reliable interlocks are provided to prevent access to the enclosure during irradiation (see 5.5.2).

2.1.3. If the enclosure is of such a size or is so arranged that the operator cannot readily determine whether the

enclosure is unoccupied, there shall be provided:

2.1.3.1. Audible or visible warning signals within the enclosure which must be actuated before irradiation can be started.

2.1.3.2. Suitable means of exit, so that any person who accidentally may be shut in can leave the enclosure without delay, or

2.1.3.3. Effective means within the enclosure for preventing or quickly interrupting the irradiation, and which

cannot be reset from outside the enclosure.

2.1.4. The exposure at any accessible region 2 in. (5 cm) from the outside surface of the enclosure cannot exceed 0.5 mR in any one hour. (The distance 2 in. is chosen as being the minimum practical distance from the barrier at which the exposure may be measured. The limit of 0.5 mR in one hour assures with reasonable probability that under practical conditions of occupancy and use, the requirements of paragraph 2.1.5 would be met.)

2.1.5. No person, either within the controlled area or in the environs of the installation, is exposed to more than the

maximum permissible dose equivalent.

2.2. Enclosed Protective Installation. An installation shall be so classified when it conforms with all the following requirements:

2.2.1. The source and all objects exposed thereto are within a permanent enclosure, within which no person is

permitted to remain during irradiation.

2.2.2. Reliable interlocks are provided to prevent access

to the enclosure during irradiation (see 5.5.2).

2.2.3. If the enclosure is of such a size or is so arranged that the operator cannot readily determine whether the enclosure is unoccupied, there shall be provided:

2,2,3,1. Audible or visible warning signals within the enclosure which must be actuated before irradiation can be

started.

2.2.3.2. Suitable means of exit, so that any person who accidentally may be shut in can leave the enclosure without delay, or

2.2.3.3. Effective means within the enclosure for preventing or quickly interrupting the irradiation, and which

cannot be reset from outside the enclosure.

2.2.4. The exposure at any accessible and occupied

region 1 ft (30 cm) from the outside surface of the enclosure does not exceed 10 mR in any one hour. For x-ray installations, this exposure limitation shall be met for any of the specified ratings of the x-ray tube.

2.2.5. The exposure at any accessible and normally unoccupied region 1 ft (30 cm) from the outside surface of the enclosure does not exceed 100 mR in any one hour. For x-ray installations, this exposure limitation shall be met for any of the specified ratings of the x-ray tube. (The distance 1 It is chosen as being a practical distance from the barrier for making measurements. The use of 100 mR in one hour assumes reasonable probability that, under practical conditions of occupancy and use, paragraph 2.2.6 can be met. It may be assumed also that the radiation source and beam direction are positioned and oriented only to serve a useful purpose.)

2.2.6. No person, either within the controlled area or in the environs of the installation, is exposed to more than

the maximum permissible dose equivalent.

2.3. Open Protective Installations. An Open Protective Installation is one which, due to operational requirements. cannot be provided with the inherent degree of protection specified for either Exempt or Enclosed Protective Installations. An installation shall be so classified when it conforms with all of the following requirements or the special protection requirements established for non-radiographic applications (see 3.3):

2.3.1. The source and all objects exposed thereto are within a conspicuously posted perimeter that limits the area in which the expenses can exceed 100 mR in any 1 hour.

- 2.3,2. No person has access to the area within the perimeter nor may remain in the area during irradiation. Positive means for preventing access, such as locked barriers shall be provided, particularly during periods of unattended
- 2.3.3. No person, either within a controlled area or in the environs of the installation, is exposed to more than the maximum permissible dose equivalent.

2.3.4. A knowledgeable person is in attendance or the

equipment is made inaccessible.

3. Selection of Class of Protective Installation

New radiation facilities shall be constructed to meet the requirements of one of the three classes of protective installations described in section 2. The classes differ in

their relative dependence on inherent shielding, operating restrictions, and supervision to secure the required degree of protection.

Each class has certain advantages and limitations; these

are indicated in sections 3.1, 3.2, and 3.3.

3.1. Exempt Protective Installation. This class provides the highest degree of inherent safety because the protection does not depend on compliance with any operating limitations. This type also has the advantage of not requiring restrictions in occupancy outside the enclosure; the built-in shielding is generally sufficient to meet the maximum permissible dose requirements for the envirous.

However, the low allowable exposure level (0.5 mR in 1 hour) for this class of installation necessitates a higher degree of inherent shielding. For radiation sources of lower energies, and for smaller enclosures, such as cabinets, the initial extra cost of the increased shielding is usually insignificant compared with the operational advantages.

At higher energies, as in the megavolt region with high workloads, the required additional shielding will usually make the use of this class extremely expensive compared with the Enclosed Protective Installation. For instance, in the case of cobalt 60, the required concrete thickness of the primary barrier for the *Exempt* type may have to be about

a foot greater than for the Euclosed type.

3.2. Enclosed Protective Installations. This class usually offers the greatest advantages for fixed installations with low use and occupancy factors. This is particularly true for high-energy sources where the reduction in shielding may result in significant savings. The shielding requirements are considerably lower than for the Exempt Protective Installation, as much as 4.3 HVL less, yet, the inherent protection is such that the possibility of significant over-exposure is remote. With proper supervision, this class offers a degree of protection similar to the Exempt Installation.

3.3. Open Protective Installations. This class shall be selected only if operational requirements prevent the use of either of the other classes. For radiography, its use should be limited mainly to mobile and portable equipment where fixed shielding cannot be used. Fluoroscopy shall be done only by remote observation, such as by closed circuit

television.

The operational requirements of other types of installations may necessitate use of this class. In this group may be such applications as process control, thickness and level gages, experimental diffraction apparatus, etc. The special

protection requirements for such installations will be included in pending reports of other subcommittees.

The protection of personnel and the public depends almost entirely on strict adherence to safe operating procedures. With this adherence, Open Protective Installations may provide a degree of protection similar to the other classes.

4. Plans for Radiation Installations

4.1. Review by Qualified Expert. The structural shielding requirements of any new installation, or of an existing one in which changes are contemplated, should be reviewed

by a qualified expert early in the planning stage.

4.2. Information to be Supplied to Expert. The expert should be provided-with available data concerning the type, the kilovoltage or energy, milliamperage or output in Rhm. the contemplated use of the source, the expected workload, and use factors, the structural details of the building and the type of occupancy of all areas which might be affected by the installation.

Data for the determination of protective barrier thicknesses may be found in the appendices of this Handbook. See

section 5 for structural details.

4.3. **Approval of Plans by Expert.** Final shielding plans, and all pertinent specifications should be approved by

the expert before construction begins.

- 4.4. Effect of Distance on Shielding Requirements. Shielding requirements generally may be reduced by locating the installation at a distance from occupied areas. (See tables 7, 9, and 10 in appendices D and E for minimum safe distances.)
- 4.5. Direction of Useful Beam. The cost of shielding may be reduced significantly by arranging the installation so that the useful beam is directed toward occupied areas as little as possible. (There is, of course, no objection to directing the useful beam at occupied areas provided there is adequate protection.)

4.6. Cross Section of Beam. Devices which permanently restrict the direction and cross section of the useful beam

may reduce the area requiring primary barriers.

4.7. Multiple Sources of Radiation. Where persons are likely to be exposed to radiation from more than one source simultaneously, or at different times, the protection associated with each source shall be increased so that the total dose received by any one person from all sources shall not exceed the maximum permissible dose.

4.8. Radiation Energy, Output, and Workload. The shielding for each occupied area should be determined on the basis of the expected maximum kilovoltage, or energy, ma or Rhm, workload, use factor, and occupancy factor affecting it. Consideration should be given to the possibility that these may increase in the future. It may be more economical to provide a higher degree of protection initially

than to add to it later.

4.9. Shielding for Films and Low-Level Counting Rooms. Attention should be given to the shielding of areas used for the storage of undeveloped films and of rooms for measuring low-activity radioactive materials. (Undeveloped fast x-ray film may be damaged by exposures totaling somewhat less than 1 mR, depending upon film type and radiation energy. See table 11. As the shielding requirement for film may be appreciably greater than for personnel, it is usually more economical to store the film in a lead protective enclosure than to place all of the lead in the room barriers.)

5. Structural Details of Protective Barriers

Any material will provide the required degree of shielding, if of sufficient thickness. At lower radiation energies, materials of high atomic number provide the attenuation with the least barrier weight.

5.1. Quality of Protective Material. All shielding materials shall be of assured quality, uniformity and permanency.

5.2. Lead Barriers.

5.2.1. Lead barriers shall be mounted in such a manner that they will not cold-flow because of their own weight and shall be protected against mechanical damage.

5.2.2. Lead sheets at joints should be in contact with a lap of at least one-half inch or twice the thickness of the

sheet, whichever is the greater.

5.2.3. Welded or burned lead seams are permissible, provided the lead equivalent of the seams is not less than the minimum requirement.

5.3. Joints Between Different Materials or Structures.

5.3.1. Joints between different kinds of protective materials shall be constructed so that the overall protection of the barrier is not impaired.

5.3.2. Joints at the floor and ceiling shall be constructed so that the overall protection is not impaired. (See figs. 1

and 2 for examples.)

5.4. Shielding of Openings in Protective Barriers. In the planning of an installation, careful consideration should be

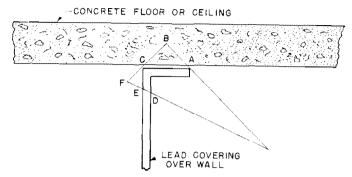


FIGURE 1. Example of a wall joint.

The sum of radiations through all paths ABCF and DEF to the point F shall be not more than the maximum permissible exposure. The framework supporting the lead wall is here considered to be of relatively x-ray transparent material.

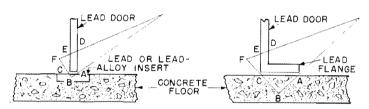


FIGURE 2. Example of door baffle.

The sum of radiations through all paths ABCF and DEF to the point F shall not be more than the maximum permissible exposure. The supporting structure for the lead door is here considered to be a framework of relatively x-ray transparent material.

given to reducing the number and size of all perforations of protective barriers and openings into protected areas. Protection for all such openings shall be provided by means of suitable protective baffles.

5.4.1. **Perforations.** Provision should be made to ensure that nails, rivets, or screws which perforate lead barriers shall be covered to give protection equivalent to

that of the unperforated barrier.

5.4.2. Openings for Pipes, Ducts, Conduits, Louvers, etc. Holes in barriers for pipes, ducts, conduits, louvers, etc., shall be provided with baffles to insure that the overall protection afforded by the barrier is not impaired. These holes should be located outside the range of possible orientations of the useful beam.

5.4.3. Doors and Observation Windows. The lead equivalent of doors and observation windows of exposure rooms, cubicles, and cabinets shall not be less than that required for the walls or barrier in which they are located.

5.5. General Protection Requirements for Doors into Pro-

tected Areas.

5.5.1. **Location of Doors.** Where practical doors into exposure rooms should be so located, that the operator has

control of access to the room.

5.5.2. Interlock Switches for Doors. All doors and panels opening into an exposure room or cabinet (except those which can be opened or removed only with tools) shall be provided with interlocking switches preventing

irradiation unless the door or panel is closed.

5.5.3. **Resumption of Operation.** If the operation of any radiation source has been interrupted by the opening of a door or panel to a Protective Installation, it shall not be possible to resume operation by merely closing the door or panel in question. To resume operation, it shall be necessary, in addition, to reset manually a suitable device

located near the operator's station.

5.5.4. Escape, or Interruption of Irradiation, from Inside Exposure Room. Whenever practicable, the exposure room shall include at least one door which may be opened from the inside. When such a door is not included, suitable means shall be provided to quickly interrupt irradiation from inside the room. The means of accomplishing this shall be explained to all personnel and a sign explaining its use shall be conspicuously posted inside the exposure room. Preferably, the beam should not be directed toward the door or interrupting means.

5.5.5. Threshold Baffle for Door Sill. A door baffle or threshold may be required for installations operating above 125 kyp, if the discontinuity can be struck by the useful beam. (See figure 2 for example that fulfills the baffle

requirement.)

5.5.6. Lap of Door Jamb. The protective lead covering of any door leading to an exposure room or cabinet shall overlap that of the door jamb and lintel so as to reduce the radiation passing through clearance spaces to the allowable limit for the door itself.

6. Radiation Protection Surveys and Inspections

6.1. Survey of New Installations. Before a new installation is placed in routine operation a radiation protection survey shall be made by a qualified expert.

6.2. Changes in Existing Installations. A radiation protection resurvey or reevaluation by a qualified expert shall be made when changes have been made in shielding, operation, equipment or occupancy of adjacent areas, and these changes may have adversely affected radiation protection. A qualified expert should be consulted in case of doubt.

6.3. Report of Radiation Protection Survey. No existing installation shall be assumed to conform with the provisions of this standard unless a radiation protection survey has been made by a qualified expert and a report of the survey

has been placed on file at the installation.

6.4. Elimination of Hazards. The radiation hazards that may be found in the course of a survey shall be eliminated before the installation in the course of a survey shall be eliminated

before the installation is used routinely.

6.5. Retention of Survey Reports. Reports of all radiation protection surveys shall be retained together with a record of the action taken with respect to the recommendations they contain.

6.6. Radiation Protection Survey Procedures. A radiation protection survey shall include the following procedures:

- 6.6.1. Installation Inspection. The installation shall be inspected to verify or determine the present and expected occupancy of the adjacent areas; the operation of audible or visible warning signals, interlocks, mechanical or electrical restrictions of the positioning of the radiation source, delay switches and other devices that have a bearing on radiation protection.
- 6.6.2. Radiation Measurements. Radiation exposure shall be measured in all adjacent areas that can be occupied. The measurements shall be made under practical conditions of operation that will result in the greatest exposure at the point of interest. X-ray apparatus should be operated at the maximum kilovoltage and at its maximum milliamperage for continuous operation at that voltage.

6.6.3. **Personnel Monitoring.** The adequacy of the personnel monitoring procedures shall be determined for Enclosed and Open Protective Installations. (Personnel monitoring is not required for Exempt Protective Installations but may be desirable where persons have to enter the

radiation enclosure.)

6.6.4. Contents of Radiation Protection Survey Report. A report of a radiation protection survey shall include:

6.6.4.1. Identification of the radiation source and installation by suitable means, e.g., serial number, room number, and building number or name.

6.6.4.2. The identity and Rhm of a gamma source,

and the potential and current at which an x-ray tube was operated during the test.

6.6.4.3. The location of the source and the orientation of the useful beam with relation to each exposure measure-

ment.
6.6.4.4. Exposure rates in all adjacent occupied areas.

6.6.4.4. Exposure rates in all adjacent occupied areas. The locations of the measurements shall be suitably identified, if necessary, by appropriate drawings.

6.6.4.5. A description of the existing mechanical and electrical limiting devices that restrict the orientation of the

useful beam and the position of the source.

6.6.4.6. A statement indicating the appropriate classi-

fication of the installation.

- 6.6.4.7. A statement of the restrictions, if any, that shall be placed on the weekly workload, degree of occupancy and the time that the useful beam may be directed at any barrier.
- 6.6.4.8. If an installation is found not to comply with this standard, it shall be stated what action must be taken to ensure compliance; if a resurvey will be required, it should be so stated.
- 6.6.5. **Inspections.** All radiation shields, interlocking switches and other safety devices shall be inspected periodically as scheduled by the radiation supervisor. (See par. 7.2.)

6.6.5.1. Inspection shall be made by a competent

person but not necessarily by a qualified expert.

6.6.5.2. Defective shields and barriers shall be promptly repaired and the inspection shall be repeated to determine whether the original degree of protection has been restored. If there is doubt about the adequacy of the repair, a qualified expert shall be consulted.

6.6.5.3. Inspection of protective devices is not a

substitute for a radiation protection survey.

7. Operating Procedures

7.1. Restrictions According to Classification.

7.1.1. Exempt Protective Installations. No restrictions shall be imposed on the mode of operation of the equipment.

7.1.2. Enclosed Protective Installations.

7.1.2.1. Since the safe operation of an Enclosed Protective Installation is based on the normal operating conditions specified in the applicable radiation protection survey report, the equipment shall be operated only within the indicated limits.

- 7.1.2.2. When the operating conditions have changed so that there is a probability that the exposure of any person may be increased, a radiation protection resurvey or evaluation shall be conducted. In case of doubt, a qualified expert should be consulted.
- 7.2. Control of Personnel. The employer or his representative shall designate a competent employee as the Radiation Protection Supervisor. This employee shall be qualified by training or experience to carry out his duties as indicated below:

7.2.1. Insuring that all Enclosed and Open Protective Installations are operated within the limitations of the appropriate radiation protection survey reports.

7.2.2. The instruction of personnel in safe working practices and the nature of injuries resulting from over-

exposure to radiation.

7.2.3. Investigating any case of abnormal exposure to personnel to determine the cause and to take remedial action.

7.2.4. Assuring that interlock switches, warning signals and signs are functioning and located where required.

7.3. Radiation Safety Instructions. Radiation safety instructions should be posted and furnished to each radiation worker in writing.

7.4. Personnel Monitoring

7.4.1. Personnel monitoring shall be required for all workers involved in the use of radiation apparatus in Open and Enclosed Protective Installations.

- 7.4.2. Personnel monitoring shall be required for each individual for whom there is a reasonable probability of receiving a radiation dose in any one calendar quarter in excess of 25 percent of the applicable MPDE per calendar quarter. (See table 1, appendix B.) This limit does not include medical exposures.
- 7.4.3. A qualified expert should be consulted on the establishment of personnel monitoring systems.

Appendix A. Definitions

Terms in this standard will be used in accordance with the following brief definitions:

Shall denotes that the ensuing recommendation is necessary or essential to meet the currently accepted standards of protection.

Should, is recommended, indicates advisory recommenda-

tions that are to be applied when practicable.

Absorbed dose. Energy imparted to matter by ionizing

particles per unit mass of irradiated material at the place of interest. The unit of absorbed dose is the rad. (When the meaning is clear, this term may be shortened to dose.)

Activity. The number of atoms decaying per unit of

time.

Attenuation. Decrease in exposure rate caused by the passage of radiation through material.

Barrier. (See protective barrier.)

Concrete equivalent. The thickness of concrete of density 2.35 g'ec (147 lb ft 3) affording the same attenuation. under specified conditions, as the material in question.

Contamination (radioactive). Deposition of radioactive material in any place where it is not desired, and particularly in any place where its presence can be harmful. The harm may be in vitiating the validity of an experiment or a procedure, or in actually being a source of danger to persons.

Controlled area. A defined area in which the occupational exposure of personnel to radiation or to radioactive material is under the supervision of an individual in charge of radiation protection. (This implies that a controlled area is one that requires control of access, occupancy, and working conditions for radiation protection purposes.)

Curiage. The number of curies (kilocuries, millicuries,

microcuries).

Curie (c). A unit of activity defined as the activity of a quantity of any radioactive nuclide in which the number of disintegrations per second is 3.700×10^{10} .

Dose. See absorbed dose and dose equivalent. [28].

Dose equivalent (DE). Dose equivalent is the product of absorbed dose D, quality factor (QF), dose distribution factor (DF), and other necessary modifying factors. (DE)=D (QF)(DF)...

Note: The term RBE dose has been used in the past, in both radiobiology and radiation protection. This term is now reserved for radiobiology only and is replaced by Dose Equivalent (DE) for radiation protection.

Quality Factor (QF). The linear-energy-transfer-dependent factor by which absorbed doses are to be multiplied to obtain for radiation protection purposes, a quantity that expresses on a common scale for all ionizing radiations, the irradiation incurred by exposed persons.

Dose Distribution Factor (DF). The factor used to express the modification of biological effect due to nonuniform distribution of internally deposited isotopes.

Dose rate. Dose per unit time.

Exposure. The exposure of x or gamma radiation at a certain place is a measure of the radiation that is based upon its ability to produce ionization in air. The unit of exposure is the roentgen.

Exposure rate. Exposure per unit time.

Exempt protective installation. An x- or gamma-ray installation which conforms with all the requirements of paragraph 2.1. (See Protective installation.)

Enclosed protective installation. An x- or gamma-ray installation which conforms with all the requirements of

paragraph 2.2. (See Protective installation).

Half-value layer (HVL). Thickness of an absorber re-

quired to attenuate a beam of radiation to one-half.

Installation. A radiation source, with its associated equipment, and the space in which it is located. (See Protective installation; Exempt protective installation; Enclosed protective installation; Open protective installation.)

Interlock. A device for precluding access to an area of radiation hazard either by preventing entry or by auto-

matically removing the hazard.

Lead equivalent. The thickness of lead affording the same attenuation, under specified conditions, as the material in question.

Leakage radiation. (See Radiation.)

Maximum permissible dose equivalent (MPDE). The maximum dose equivalent that the body of a person or specific parts thereof shall be permitted to receive in a stated period of time. For the radiations considered here, the dose equivalent in rems may be considered numerically equal to the absorbed dose in rads and the exposure in roentgens numerically equal to the absorbed dose in rads. (See table 1, appendix B.)

Monitoring. Periodic or continuous determination of the exposure rate in an area (area monitoring) or the exposure received by a person (personnel monitoring) or the measure-

ment of contamination levels.

Occupancy factor (T). The factor by which the workload should be multiplied to correct for the degree or type of

occupancy of the area in question.

Occupied area. An area that may be occupied by persons. Open protective installation. An x- or gamma-ray installation which conforms with all the requirements of paragraph 2.3. (See Protective installation.)

Protective barrier. Barrier of attenuating material used

to reduce radiation hazards.

Primary protective barrier. Barrier sufficient to attenuate the useful beam to the required level.

Secondary protective barrier. Barrier sufficient to attenuate stray radiation to the required level.

Protective Source Housing. Enclosure for sealed gamma sources, which limits the leakage radiation to a specified level. It shall conform to the following requirements:

(a) with the shutter closed or the source in the "off"

position:

(1) the average exposure rate at 5 cm from the surface shall not exceed 20 mR per hour, and the maximum exposure rate shall not exceed 100 mR per hour;

(2) the average exposure rate at 100 cm from the source shall not exceed 2 mR per hour, and the maximum exposure rate shall not exceed 10 mR per hour:

(b) remote means shall be provided for bringing the source

into its exposure and shielded positions.

Protective Tube Housing. The housing which surrounds the x-ray tube itself, or the tube and other parts of the x-ray apparatus (for example, transformer) shall be so constructed that the leakage radiation at a distance of 100 cm from the target cannot exceed 1 roentgen in 1 hr, when the tube is operated at any of its specified ratings.

Qualified expert. A person having the knowledge and training necessary to measure ionizing radiations and to advise regarding radiation protection, for example, persons certified in this field by the American Boards of Radiology,

Health Physics, or Industrial Hygiene.

Radiation protection supervisor. Person directly responsible for radiation protection. It is his duty to insure that all procedures are carried out in compliance with pertinent established rules, including recommendations contained in this Handbook.

Radiation protection survey. Evaluation of the radiation hazards in and around an installation. It customarily includes a physical survey of the arrangement and use of the equipment and measurements of the exposure rates under

expected operating conditions.

Radiation (ionizing radiation). Electromagnetic radiation (x-ray or gamma-ray photons or quanta), or corpuscular radiation (alpha particles, beta particles, electrons, positrons, protons, neutrons, and heavy particles) capable of producing ions.

(1) Primary radiation.

(a) X rays. Radiation coming directly from the target of the x-ray tube. Except for the useful beam,

the bulk of this radiation is absorbed in the tube housing.

(b) **Beta and gamma rays.** Radiation coming directly from the radioactive source.

(2) **Secondary radiation.** Radiation other than the primary radiation, emitted by irradiated matter

(3) Scattered radiation. Radiation that, during passage through matter, has been deviated in direction and usually has also had its energy diminished.

(4) Useful beam. That part of the primary and secondary radiation which passes through the aperture,

cone, or other device for collimation.

(5) Leakage radiation. All radiation, except the useful beam, coming from the tube or source housing.

(6) Stray radiation. Radiation other than the useful beam. It includes leakage radiation and secondary radiation.

Rad. Unit of absorbed dose. 1 rad is 100 ergs/g.

Rem. Unit of dose equivalent (DE).

Rhm. Roentgens per hour at 1 m from the effective center of the source. (This distance is usually measured to the nearest surface of the source as its effective center generally is not known.)

Roentgen (R). Unit of exposure of x- or gamma-radiation. One roentgen is an exposure of x-radiation or gamma-radiation such that the associated corpuscular emission per 0.001293 g of air produces, in air, ions carrying 1 esu of quantity of electricity of either sign.

Sealed source. Radioactive material that is encased in, and is to be used in, a container in a manner intended to

prevent leakage of the radioactive material.

Source. Discrete amount of radioactive material or radiation producing equipment.

Scattered radiation. (See Radiation.) Secondary radiation. (See Radiation.)

Secondary protective barrier. (See Protective barrier.)

Stray radiation. (See Radiation.)

Survey. (See Radiation protection survey.)

Specific gamma-ray constant (I). Specific gamma-ray constant [28] (specific gamma-ray output) of a radioactive nuclide is the exposure rate produced by the unfiltered gamma rays from a point source of a defined quantity of that nuclide at a defined distance. The unit of specific gamma-ray constant is the roentgen per millicurie hour at 1 cm.

Tenth value layer (TVL). Thickness of an absorber

required to attenuate a beam of radiation to one-tenth.

Use factor (U). The fraction of the workload during which the useful beam is pointed in the direction under consideration.

Useful beam. (See Radiation.)

User. A person, organization, or institution having administrative control over one or more installations or mobile sources.

Workload. A measure in suitable units of the amount of use of radiation equipment. For the purpose of this standard the workload is expressed in millliampere-minutes per week for x-ray sources and roentgens per week at 100 cm from the source for gamma-ray sources.

Appendix B. Maximum Permissible Dose Equivalent Values

Table 1. Maximum permissible dose equivalent values d

[The indicated values are for the limited scope of this standard. See Addendum to H59, April 15, 1958 for more complete information] [24]

	Average weekly dose *	Maximum 13-week dose	Maximum yearly dose	Maximum accumu- lated dose b
Controlled areas— Whole body gonads, blood-forming organs, and lens of eyc. Skin of whole body	τεm ° 0. 1	rem * 3 * 10 25	**************************************	5(N-18)

Notes:

N=Age in years and is greater than 18.

For design purposes only.
 When the previous occupational exposure history of an individual is not definitely known, it shall be assumed that he has already received the full dose permitted by the formula

Persons who were exposed in accordance with the former maximum permissible weekly dose of 0.3 rem and who have accumulated a dose higher than that permitted by the formula shall be restricted to a maximum yearly dose of 5 rem.

shall be restricted to a maximum yearly dose of 5 rem.

The dose equivalent in rems may be assumed to be equal to the exposure in roentgens.

Exposure of patients for medical and dental purposes is not included in the maximum permissible dose equivalent.

* See Am. J. Roen, 84, 152 (1960). [21]

Appendix C. Occupancy and Use Factors

Table 2. Occupancy factors (T)

[For use as a guide in planning shielding where adequate occupancy data are not available.]

Full occupancy (T=1)

Control space and waiting space, darkrooms, workrooms, shops, offices, and corridors large enough to hold desks, rest and lounge rooms routinely used by occupationally exposed personnel, living quarters, children's play areas, occupied space in adjoining buildings.

Partial occupancy (T=1/4)

Corridors too narrow for desks, utility rooms, rest and lounge rooms not used routinely by occupationally exposed personnel, elevators using operators, unattended parking lots.

Occasional occupancy (T=1/16)

Closets too small for future occupancy, toilets not used routinely by occupationally exposed personnel, stairways, automatic elevators, outside areas used only for pedestrians or vehicular traffic.

Table 3. Use factors (U)

[For use as a guide in planning shielding when complete data are not available.]

. 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	Exempt	Enclosed					
Installation use	all uses	Collimated sources	Open sources				
Floor	1 1 1	1 14 316	1 1				

Appendix D. Determination of Gamma-Ray Protective Barrier Thicknesses

The thickness of protective barrier necessary to reduce the gamma rays from a sealed gamma source to the maximum permissible level depends upon the energy of the radiation, design of the source housing, beam diameter, scattered radiation from irradiated objects, the use factor (fraction of the time during which the radiation is incident on the barrier), distance from the source to occupied areas, degree and nature of occupancy, type of installation, and the material of which the barrier is constructed.

Table 4 gives data on radioactive gamma-ray sources of interest for industrial purposes, including the energy of the gamma rays emitted. Tables 5 through 8 give shielding requirements for several commonly used types of source. Occasionally, conditions are not covered by the tables and it will then be necessary to resort to computation of the barrier requirements by using the transmission curves in various materials, figures 3 through 16.

Table 4. Gamma-ray sources

TABLE 1. Ga	mmo-rag	y ovarice		
Radioisotope	Atomic number	Half-life	Gamma-ray energy	Specific gamma-ray constant
Cesium 137 Chromium 51 Cobalt 60 Gold 198 Lridium 192 Radium 226 Tantalum 182	79 77 88	27y 28d 5.2y 2.7d 74d 1622y 115d	Mee 0, 662 0, 323 1, 17, 1, 33 0, 412 0, 136, 1, 065 0, 047 to 2, 4 0, 066 to 1, 2	R/curie a hr at 1 m 0.32 c 0.018 1.3 0.23 c 0.5 b 0.825 a 0.6

^{*} These values assume that gamma-ray absorption in the source is negligible. Value in R/curie hr at 1 m can be converted to R millicurie hr at 1 cm by multiplying by 10.

Table 5A. Coball 60 shielding requirements for controlled areas

000040 1

mR; add one tenth-value layer (TVL) for regions in the environs to reduce radiation to 10 mR/week, U = use factor, T = cocupancy factor.

The parcy factor (T) are equal to one.

The factor of the properties of the cocupant of the cocu

b This value assumes that the source is scaled within a 0.50-mm thick platimum capsule, * These values are less certain and in some cases are estimates.

21

Table 5B. Cobalt 60 sheilding requirements for controlled areas

WUT b	Curies	approx.			D	istance fro	n source to	o occupied :	areas (ft)				
80,000		2000 1000 500 250	5	7 5	10 7 5	14 10 7 5	20 14 10 7	28 20 14 10 7 5	40 28 20 14 10 7 5	40 28 20 14 10 7 5	40 28 20 14 10 7 5	40 28 20 14 10 7	4(2) 2(14
Type of barrier	App HVL (in.)	TVL (in.)				Thickn	ess of cone	r ete (densit	y 147 lb/cu	ı ft) (in.)			
Primary	2. 6 2. 6 2. 6 2. 5 2. 4 2. 3 1. 8 1. 7	8. 6 8. 6 8. 6 8. 2 8. 0 7. 6 6. 2 5. 8 5. 0	47. 5 23. 1 20. 7 30. 6 27. 0 24. 0 16. 9 15. 0 12. 5	45. 1 20, 7 18. 3 28, 1 24, 6 21, 7 15. 0 13. 3 11. 0	42. 7 18. 3 15. 6 25. 7 22. 2 19. 4 13. 2 11. 6 9. 6	40. 3 15. 6 12. 9 23. 2 19. 8 17. 1 11. 4 9. 9 8. 1	37. 8 12. 9 10. 2 20. 6 17. 4 14. 8 9. 6 8. 2 6. 6	35. 4 10. 2 7. 3 18. 2 15. 0 12. 3 7. 8 6. 5 5. 1	32. 9 7. 3 4. 4 15. 8 12. 6 10. 0 6. 0 4. 7 3. 7	30. 5 4. 4 1. 4 13. 3 10. 2 7. 7 4. 1 3. 0 2. 2	28. 0 1. 4 0 10, 9 7. 8 5. 4 2. 1 1. 2 0. 8	25, 6 0 0 8, 4 5, 4 3, 0 0, 1 0	23. 1 0 0 5. 9 3. 0 0, 5 0

Table 6A Cesium 137 sheilding requirements for controlled greas

W UT b	Curiese	approx.				Distant	e from sou	ree to occu	pied areas	(ft)			
24,000 12,000 6,000 3,000 1,500 750 375		2000 1000 500 250 125	5	7 5	10 7 5	14 10 7 5	20 14 10 7 5	28 20 14 10 7 5	40 28 20 14 10 7 5	40 28 20 14 10 7	40 28 20 14 10	40 28 20 14	46 28 20
Type of barrier	App HVL (em)	TVL (em)					Thiekno	ess of lead ((cm)				
Primary Secondary: Leakage 40, 1% 0.05% Scatter * 35% 56% 90% 119%	0. 65 0. 65 0. 65 0. 45 0. 38 0. 22 0. 13	2. 1 2. 1 2. 1 1. 5 1. 3 0. 7 0. 4	10. 5 4. 2 3. 5 5. 3 4. 1 2. 0 1. 0	9. 9 3. 5 2. 9 4. 9 3. 7 1. 8 0. 9	9.3 2.9 2.3 4.4 3.3 1.6 0.8	8. 6 2. 3 1. 6 3. 9 2. 9 1. 3 0. 7	8. 0 1. 6 1. 0 3. 5 2. 5 1. 1 0. 6	7. 4 1. 0 0. 4 3. 0 2. 1 0. 9 0. 5	6. 7 0. 4 0 2. 6 1. 7 0. 7 0. 3	6. 1 0 0 2. 2 1. 4 0. 5 0. 2	5. 5 0 0 1. 7 1. 0 0. 4 0. 2	4.8 0 0 1.3 0.7 0.2 0.1	4.1 0 0 0.8 0.4 0.1 0.03

^{*} For a weekly design level of 160 mR; add one tenth-value layer (TVL) for regions in the environs to reduce radiation to 10 mR/week, b W = workload in R/week at 1 m, U = use factor, T = occupancy factor,

* Assumes use factor (U) and occupancy factor (T) are equal to one,

d Refers to leakage radiation of source housing; may be ignored if less than 2.5 mR/hr at 1 m in "ou" position,

* For large field (20 cm diam) and a source-phantom distance of 40 to 60 cm. This includes scattering from the collimator and from the phantom, (From Braestrup and Wyckoff [1].)

[•] For a weekly design level of 100 mR; add one tenth-value layer (TVL) for regions in the environs to reduce to 10 mR/week.

• W=workload in R/week at 1 m, U=use factor, T=occupancy factor.

• Assumes use factor (U) and occupancy factor (T) are equal to one.

• Assumes use factor addition of source housing; may be ignored if less than 2.5 mR/hr at 1 m in "on" position.

• For large field (20 cm diam) and a source-scatterer distance of 50 cm. This includes only scattering from an obliquely positioned flat scatterer.

W UT 6	Curies •	approx.				Dista	nee from so	urce to occi	ipled areas	s (ft)			
24,000		2000 1000 500 250 125	5	7 5	10 7 5	14 10 7 5	20 14 10 7 5	28 20 14 10 7 5	40 28 20 14 10 7 5	40 28 20 14 10 7	40 28 20 14 10	40 28 20 14	40 28 20
Type of barrier	App HVL (in.)	TVI, (in.)					Thicknes	s of concret	e (in.)				***************************************
Primary	1. 9 1. 9 1. 9 1. 8 1. 5 1. 4 1. 3	6. 2 6. 2 6. 2 6. 1 4. 9 4. 7 4. 4	34. 1 14. 8 12. 9 23. 4 18. 8 16. 3 14. 9	32. 2 12. 9 11. 0 21. 6 17. 3 14. 9 13. 6	30. 2 11. 0 9. 1 19. 8 15. 8 13. 5 12. 3	28, 3 9, 1 7, 0 18, 0 14, 3 12, 0 11, 0	26, 3 7, 0 4, 9 16, 2 12, 8 10, 6 9, 6	24. 4 4. 9 2. 8 14. 4 11. 3 9. 2 8. 3	22, 4 2, 0 0 12, 5 9, 8 7, 8 7, 0	20, 6 0 0 10, 7 8, 4 6, 4 5, 7	18. 7 0 0 8. 8 6. 9 5. 0 4. 3	16. 8 0 0 7. 0 5. 5 3. 7 3. 0	14. 8 0 0 5. 1 4. 0 1. 9 1. 3

For a weekly design level of 100 mR; add one tenth-value layer (TVL) for regions in the environs to reduce to 10 mR/week.
W=workload in R/week at 1 m, U=use factor, T=occupancy factor.
Assumes use factor (U) and occupancy factor (T) are equal to one.
Assumes to leakage radiation of source housing; may be ignored if less than 2.5 mR/hr at 1 m in "on" position.
For large field (20 cm diam) and a source-scatterer distance of 50 cm. This includes only scattering from an obliquely positioned flat scatterer.

100, 30,00 100,00 100,00 100, 300, 100, 100, 100, 100,

Radium TVL°=5.5 cm lead	TVL	Cobalt 60 TVL*=4.1 cm lead	ead	TVL	Cosium 137 TVL*=2.2 cm lead	lead
Militeurio Thickness of lead required to reduce radiation to 1800 mR b at a distance of	to reduc	e radiati	on to 100	mR b at	a dista	nce of
1.ft 8,2.ft 6,5.ft	17	3.2 ft	6.5 ft	17	3.2 h	6.5 ft
100. 4.0 0 300. 6.2 1.5 0 1.000. 11.3 5.8 3.1 1 10,000. 14.1 8.5 5.5 1 30,000. 14.1 8.5 5.5 1 100,000. 19.5 13.7 10.5	7531975 2010100	0300000-1 0000000-1	0504080	च्य्यक्ष्मह्दार च्य्यक्ष्यक्रम	######################################	#10-5222
Irid TVL•=	Iridium 192					-
Millieurle-hours Thickness of lead required to reduce radiation to 100 mR	TVL*=2.0 cm lead	äd		Gold 198 V.L.≈=1.1 cm	Gold 198 TVL*=1.1 cm lead	ā
110	of lead re	at a distance of	reduce 1	adiation (Co)	198 1 cm les	mR b
	=2.0 cm lt of lead re 3.2 ft	guired to at a dist	reduce 1	Gold I	198 1 cm les 1 to 100	mR b

	Millieurie-hours	The control of the co	Table 7. Relation between distance and milliourie-hours for an exposure of 0.1 R from an unshielded source
Radinm		~	between di 1 0.1 R fr
Cobalt 60			stance an
Radium Cobalt 60 Cestum 137 Iridium 192 Gold 198	Distance to source	The state of the s	between distance and millicurie-hoo of 0.1 R from an unshielded source
Iridium 192			hours for an rec
Gold 198			exposure

3,000 3,000

7.6 3.0 3.1 3.1 30.1

11.2 2.1 3.5 11.9 20.5 37.6

18058-F05 51889-65

TABLE

œ

Protection requirements (in centimeters gamma-ray sources

0,

lead) for various

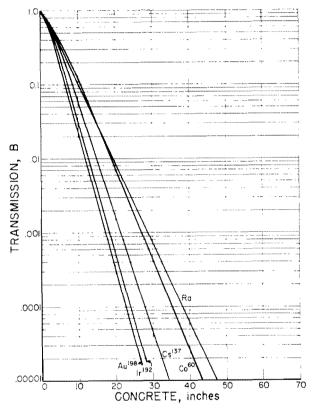


Figure 3. Transmission through concrete (density 147 lb/ft³) of gamma rays from radium [14]; cobalt 60, cesium 137, gold 198 [7]; iridium 192 [15].

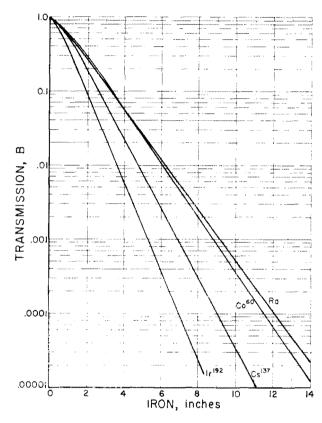


Figure 4. Transmission through iron of gamma rays from radium [14]: cobalt 60, cesium 137 [7]; iridium 192 [15].

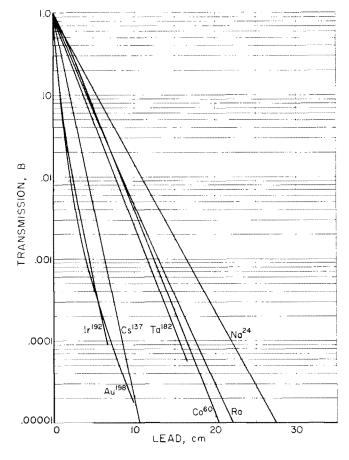


Figure 5. Transmission through lead of gamma rays from radium [14]; cobalt 60, cesium 137, gold 198 [7]; iridium 192 [15]; tantidum 182 and sodium 24 [29].

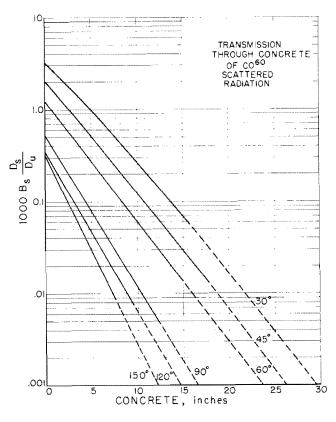


Figure 6a. Transmission through concrete (density 147 lb/ft 3) of coball 60 scattered radiation from cylindrical Masonite phantom, 20-cm diam field at 1 m from source [10].

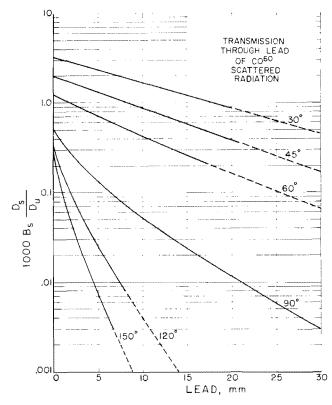


Figure 6b. Transmission through lead of cobalt 60 scattered radiation from cylindrical Masonite phantom, 20-cm diam field at 1 m from source [10].

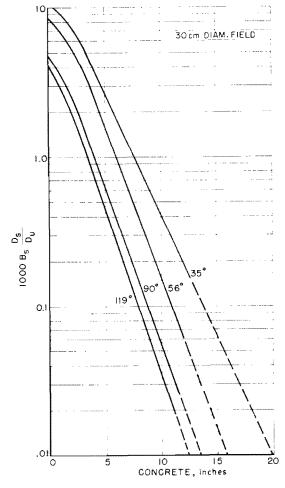


Figure 7a. Transmission through concrete (density 147 lb/ft³) of cesium 137 radiation scattered at the indicated angles from an oblique concrete barrier [4].

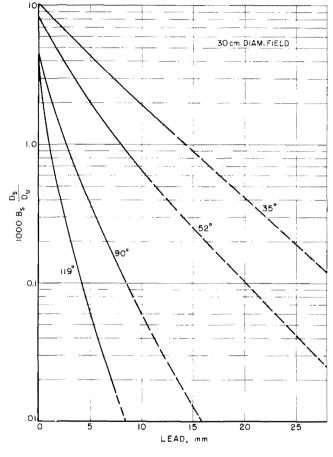


Figure 7b. Transmission through lead of cesium 137 radiation scattered at the indicated angles from an oblique concrete barrier [4].

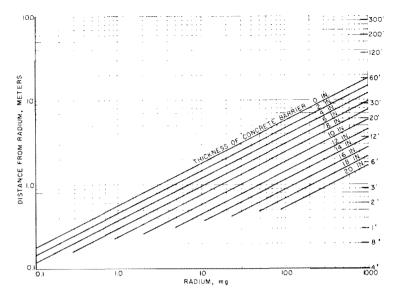


Figure 8. Relation between amount of radium, distance, and shielding for controlled areas to reduce exposure to 0.1 R per 40 hr.

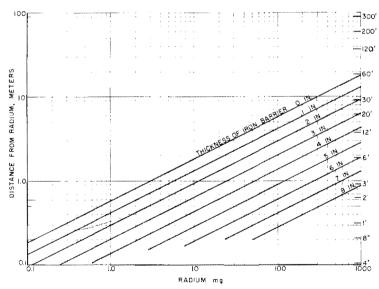


Figure 9. Relation between amount of radium, distance, and shielding for controlled areas to reduce exposure to 0.1 R per 40 hr.

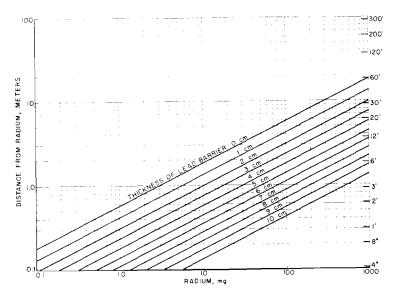


Figure 10. Relation between amount of radium, distance, and shielding for controlled areas to reduce exposure to 0.1 R per 40 hr.

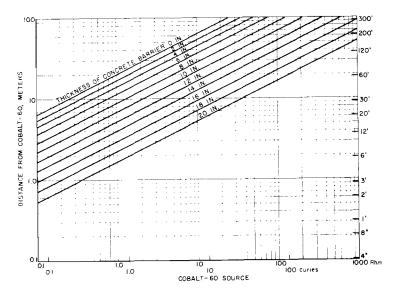


Figure 11. Relation between amount of cobalt 60 or Rhm, distance, and shielding for controlled areas to reduce exposure to 0.1 R per $40\ hr$.

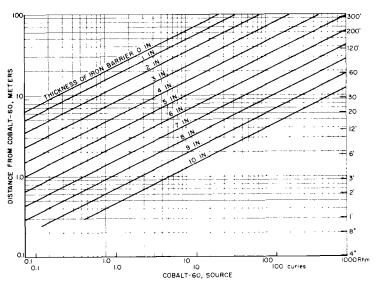


Figure 12. Relation between amount of cobalt 60 or Rhm, distance, and shielding for controlled areas to reduce exposure to 0.1 R per 40 hr.

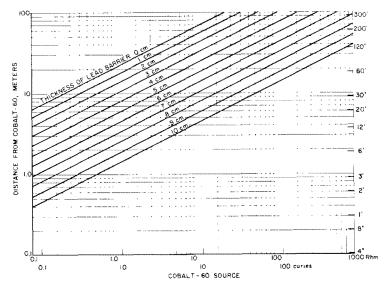


Figure 13. Relation between amount of cobalt 60 or Rhm, distance, and shielding for controlled areas to reduce exposure to 0.1 R per 40 hr.

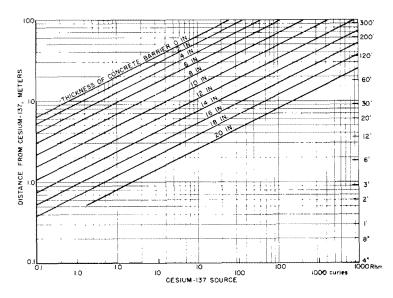


Figure 14. Relation between amount of cesium 137 or Rhm, distance, and shielding for controlled areas to reduce exposure to 0.1 R per 40 hr.

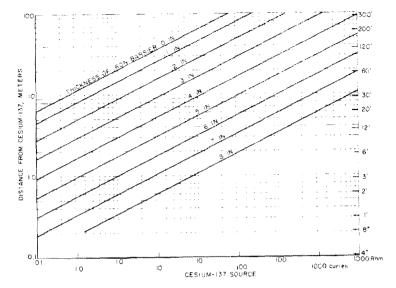


Figure 15. Relation between amount of cesium 13? or Rhm, distance, and shielding for controlled areas to reduce exposure to 0.1 R per

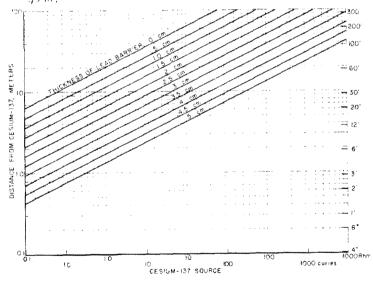


FIGURE 16. Relation between amount of cesium 13% or Rhm, distance, and shielding for controlled areas to reduce exposure to 0.1 R per 40 hr.

Appendix E. Tables of General X-Ray Information

Table 9. Distance protection (in feet) against useful beam in controlled

[For design purposes only, the maximum permissible exposure is taken to be 100 mR/wk.]

Kilovoltage	50	70	100	250	1,000	2,000
X-ray output (K ₀) (R/ma- min at 1 m)	0.05	0.1	0.4	2	29	280
					<u> </u>	

WUT a		3	Distance in	ı feet	and the second second second	
2 4	3 5 6 7 8 9 12 15 16 22 24 24 27 30 40 42 47 75 62 69 75 95 95 95	5 7 9 10 12 13 17 22 24 33 35 58 65 70 85 102 130 180	9 13 17 19 23 25 35 44 47 62 66 75 80 107 120 120 165 175 200 259 350	20 28 37 40 47 52 69 130 140 155 250 210 330 370 480 640	60 76 105 115 130 145 140 220 320 335 375 400 530 570 600 720 850 1,030	200 270 335 350 415 450 650 700 850 1, 100 1, 120 1, 200 1, 275 1, 350 1, 575 1, 700 1, 575 1, 700 2, 350 2, 350

[•] W=workload in milliampere-minutes per week. U=use factor, T=occupancy factor,

88

Distance protection (in feet) against useful beam in areas TABLE 10.

		The state of the s				4
Kilovoltage	98	20	100 m	250	1,000	2,000
X-ray output (Ke) (R/ma- min at 1 m)	0.05	ī.	4.0	64	ୟ	280
*L7.11			Distane	Distance in feet	i.	
27-	11	15 20	88	50	160 220	489 590
	20	25		36	255	069
CC	ଲ ଅ		23 8	901	0.570 0.520 0.520	825 225 225 225 225 225 225 225 225 225
15.	3 5	2 6	250	127	340	968
30	35	- -	£	165	430	1.000
20.	90 90 90	IG (102	195	510	1,150
198	유 17		110	210	530	1.280
(A)	36	- 2.35	120	200	96.	1,450
200	62	98	165	310	750	1, 550
250	65	707	175	330	008 8	1,600
500	 128	130	25.5	20	<u> </u>	1.89
800	E	150	950	29	1.050	020
1.000	110	160	025	96	1.100	2,000
2,000	135	007	380	570	1,250	2, 150
2,500	145	210	345	900	1,300	2,200
4,000	165	.540	373	650	1,400	2,300
10,000	210	300	160	750	1,550	2, 550
40,000	280	390	580	906	1, 750	2,850

a W= workload in milliampere-minutes per week. U= use factor. T= occupancy factor.

Table 11. Shielding for radiographic films

Madicated thicknesses required to reduce radiation to 1 mH c for a weekly workload of 1,000 ma-min at 100 kyp, 400 ma-min at 125 kyp, or 200 ma-min at 150 kyp]

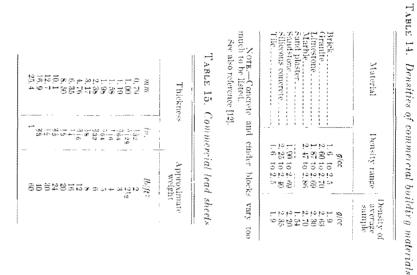
1.1 6.8 9.7 0.0 1.4 1.4	914 584 556 586 914	1.2 0.3 2.0 2.0 2.0 1.3 1.3 1.3 1.3 1.3	9 6 2 8 4 9 8 4 9 W	954 784 76 76 76 854 954	1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0	7.4 9.0 10, 2 10, 2 10, 2 10, 2 10, 2 10, 2 10, 2 10, 2 10, 2	934 934 834 834 834 84 934 94	1 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	7 '9 '7 '9 '7 '9 '7 '9 '7 '9 '7 '9 '9 '9 '9 '9 '9 '9 '9 '9 '9 '9 '9 '9	286 286 287 287 287 287	611 616 818 418 418 418 418 418 418 418 418 418	Давриолод Давриолод Давриолод Давриолод Давија, Давија, Давија, Давија, Давија,	hour hour	39
-noO • 93919	pt	- · · · - 89,1 	(1) (1) (1) (1) (1)	1 62,1) 11 br	ы ы	-noO e otete	m 60.8) 13	(0) (0)	-noD a store	n et.2, ti	12	Type of burrier	omit oggiotz	

* Norg. Concrete thicknesses approximate.

† Norg. - For other workloads, add or subtract appropriate mumber of HVL.

† Norg. - Undeveloped has x-ray film may be damaged by exposures totaling somewhat less than 1 mR depending upon film (ype and radiation energy. Such Tindeveloped has x-ray film may be damaged by exposures totaling somewhat less than 1 mR depending upon film type and radiation energy.

Such that is addition of one tenth-value layer to the protective barriers specified in the table.


Table 12, Half-value layer

				Annual Control of the	4 447					~			
15.0 2.95 7.5	6.2 2.45 12.0	97 87 80	9.E 7.1 9.E	22 172 5 5	1, 2 1, 2 1, 2 1, 3 1, 3	873 171 870	0.5 0.1 6.2 6.2	6.3 9.3	0.2 81 20.0	871 27 5670	27 T 9 T 81 TO	60.0 4. 18.	Concrete (mm) brad (m.)
3,000 kvep	5'000 KACD	1*000 KAGD	dəan 009	400 KAGD	300 PAD	520 KAD	day 608	120 KVP	152 KAD	433 001	day 02	day 09	- ·
				smitte	ajod aqnj s	nojana 40.	тац						hárotam 20iltamoltA

Note,—One tenth-value layer is equivalent to 3.33 hall-value layers.

ರಾವಗರಣ್ಕು ಹಣಾರಾದಾಣದ ಹೆಹಿಸಲ್ಲಿ ಬೆಬೆಬೆಬೆಬೆಕ್ಕಿಗೆಂದು TABLE 13. Secondary barrier requirements for leakage radiation from protective tube housings for controlled areas 9 e. Operating time in hours per week Number of half-value layers ಟ್ಟರ್ಪಡಕ್ಕಳಹೆಗೆಗಳ ಬರ್ಗಾರ್ಗಾರ್ಪಡ್ರರ 15 [Add 3.3 hvl for environs] Ξ 10 ಧರ್ಮನವರು ಅಥ ಕ್ರಮ್ಮನ್ ಮತ್ತು ಕ್ರಮ್ಮನ್ ಕ್ರಮ್ಮನ್ ಪ್ರಮುಖ ಸಂಪ್ರವಾಗಿ ಕ್ರಮ್ಮನ್ ಪ್ರಮುಖ ಸಂಪ್ರವಾಗಿ ಕ್ರಮ್ಮನ್ ಸಂಪ್ರವಾಗಿ ಸಂಪ 71 Distance from target in feet

9

Appendix F. X-Ray Shielding Tables for Controlled Areas and Environs [1]

Table 16a. Industrial x-ray shielding requirements for controlled areas * [1]

	ь В.	CT					Distat	ree from ta	be to occur $\hat{\mu}$	ied area				
	44,00 20,00 10,00 5,00 2,50 1,25 62 31	() () () () () () ()		5	5	10 7 5	14 10 7 5	20 14 10 7 5	28 20 14 19 7 5	40 28 20 14 10 7 5	40 28 20 14 10 7	40 28 20 14 10 7 5	40 28 20 14 10 7	40 28 20 14
Potential	Approxi	mate c	Type of barrier						ss of lead d					
	HVL	TVL	.,,,,,,,,						· in					inches agricus at 179 79
kr	mm	in m												
100	0.2	0, 7	Prim.	3. 2 2. 1	2.9 1.8	2.7	2. 4 1. 4	2. 2 1. 2	1, 9 1, 0	1.7 0.8	1. 4 0, 6	1, 2 0, 4	1. 0 0. 2	0.8
150	0.3	1.0		4.1	3.8	3.5	3.3	3.0	2.7	2.4	2.1	1.8	1.6	0. 1 1. 3
200	0, 5	1. 7	Sec. Prim.	2.6 6.4	2. 3 5. 9	2.0 5.4	1.8 4.9	1.5	1. 2 3. 9	0, 9 3, 4	0. 7 3. 0	0, 5 2, 6	0, 3 2, 3	0, 1 2, 0 0, 2 2, 8 0, 3
250	0, 9	3, 0	Sec. Prim. Sec.	4.1 11.3 6.4	3, 7 10, 4 5, 7	3. 1 9. 5 5. 0	2.6 8.6 4.2	2. 2 7. 7 3, 5	1. 8 6. 8 2. 8	1.4 6,0 2.2	1. 1 5. 2 1. 6	0, 8 4, 1 1, 2	0.5 3.6 0.8	2. 8 0. 3
300 i	1.7	5, 6	Prim. See.	21. 6 12. 0	19, 8 10, 4	18, 0 8, 9	16.3	14. 6 6. 3	13. 0 5. 2	11.4	9.8 3.2	8.3	6,8	5, 5 0, 6

* For a design level of 100 mR/week. Add one tenth-value layer (TVL) for environs to reduce radiation to 10 mR/week.

b W=workload in mannin/week. U=use factor. T=occupancy factor. T is equal to one for controlled areas and may be less than one for environs.

c These values are obtained at high filtration.

d The indicated values for min lead are for pulsating potentials; for constant potentials, 15 to 25 percent larger thicknesses of lead may be required.

Table 16b. Industrial x-ray shielding requirements for controlled areas * [1]

		16 B V	UT					Dista	nce from tu	ibe to occu /t	pied area				
		40,68 20,00 10,48 5,00 2,50 1,20 6; 3	ня ня ня ня ня ня эся эся эся эся		5	5	10 7 5	11 10 7 5	20 14 10 7 5	28 20 11 10 7 5	40 28 20 14 10 7 5	40 28 20 14 10 7 5	40 28 20 14 10 7 5	40 28 20 11 10 7	40 28 20 14 10
	Potential	Approx	imater	Type of				Thickness	of concret	e (density	147 lb/ft ⁸)	d, e			
14		HVL	TVL	barrier						in.					
	kr 100	in. 0, 6	in. 2, 0	Prim.	9, 2	8, 6	8,0	7. 3	6, 6	6, 0	5. 5	4.6	4.0	3, 3	2, 8
	150	0, 9	3. 0	Sec. Print. Sec.	6, 6 13, 3 9, 1	5. 8 12. 4 8. 2	5, 2 11, 5 7, 3	4, 6 10, 6 6, 4	1, 0 9, 7 5, 5	3.4 8.9 4.6	2. 8 8. 1 3. 7	2.3 7.2 2.9	1.8 6.5 2.2	1, 3 5, 8 1, 7	0, 8 5, 1 1, 2
	200	1.1	3, 6	Prim.	16, 9	15, 8	11.8	13, 7	12.7	11.6	10, 6	9, 6	8, 5	7. 5	6, 5
	250	1.1+	3. 8	See. Prim. Sec.	12. 1 19. 3 12. 6	10, 9 18, 0 11, 4	9, 8 16, 8 10, 3	8. 7 15. 6 9. 2	7. 6 14. 4 8. 1	6, 6 13, 2 7, 0	5; 6 12, 0 6, 0	4, 6 10, 8 5, 0	3, 6 9, 6 4, 0	2. 6 8. 4 3. 0	1, 6 7, 2 2, 0
	300	1. 2	4. 0	Prim. Sec.	21. 7 13. 4	20, 5 12, 2	19.3 11.0	18. Ī 9. 8	16, 9 8, 8	15. 7 7. 8	14. 5 6. 8	13. 3 5. 8	12.1	10. 9 3, 8	9. 7 2. 8

Table 17. Average shielding requirements for 1-me x-ray installations * [1]

				7.00	,					-	I)ista	nce fi	om:	lube	to occ	upic	d are	a							V 3.4	
	Type of barrier	<i>₹'T</i> h		7	ſt (2.	11m) 			10 /	 t (3.	05m)			111	t (4.:	28m)			20 [t (6.1	(Отп)			30 (ft (9.	(5m)	
				Lead	l 	Conc	rete		Lead		Cone	rete		Læid	,	Cone	rete		Lead		Conc	erete		Leac	1	Cond	rete
			mm	in,•	psfd	ín.	psfd	mm	in.e	psf4	in.	psfd	mm	in.º	pstu	in.	psfd	mm	in.e	psfd	in,	psfa	ınım	in.e	psfd	in.	psfd
5	For controlled areas: Primary	1 1 116	130 115 100	4. 5	270		390 350 310	105	4. 7 4. 1 3. 5	240	$\begin{array}{c c} 30 \\ 26 \frac{1}{2} \\ 23 \end{array}$	370 330 280	100	3, 9	230	28½ 25 21½	310	90	3, 5	200	26½ 23 19½	280	85	3. 9 3. 3 2. 8	2(8)	211/2	310 260 220
	For environs: Primary	1 34 156 164 1 ₂₅₆		5, 5	320 290 250	31½ 31 27½	420 380	130 115 100	5, 7 5, 1 4, 5 3, 9 3, 2	300 270 230	29	360	125 110 90	4, 9 4, 3 3, 5	290 250	273/2 24	380 340 290	115 100 80	3. 9 3. 2	$270 \\ 230 \\ 190$	32½ 29 25¾ 25¾ 22 18½	360 310 270	110 90 75	4.3 3.5 3.0	250 210	271/2 24 201/2	380 340 290 250 210

^{*} For design levels of 100 mR/week for controlled areas and 10 mR/week for environs, and for a weekly workload of 4000 ma-min. b U=use factor, T=occupancy. T is equal to one for controlled areas, and may be less than one for environs. c Approximately.

d Pounds per square foot computed from unn of lead or in, of concrete and a concrete density of 2.35 g/ee (147 lb/ft*).

^{*} For a design level of 100 mR/week. Add one tenth-value layer (TVL) for environs to reduce radiation to 10 mR/week. b W=workload in marmin/week, U=use factor, T=occupancy factor. T is equal to one for controlled areas and may be less than one for environs. These values are obtained at high filtration.

d For other densities, p, the tabular values should be multiplied by 147.

The indicated values for inches of concrete are for pulsating potentials; for constant potentials, 5 to 15 percent larger thicknesses of concrete may be required.

[1] * snoithblathi gir-x abl-2 rol shromoringor guildshk rgmost. 31 a.18 a.T

							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		• •		•	_ *	•																
925 930	58 88 88 81 84 84	200 300 450 480 240	1 9 1 2 1 8	1221 180 502	430 ¹ 031	30 32 40 42 20	380 110 200	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	01 1 162 160 517 517	021: 029: 069:	88 81/ 81/	300 150 180 240 260	1 8 1 6	180 302	220 910	\$1 09	380 011 200 200 200 050	27.9 87.2 976		260	85 81 81 82 83 84	180 240 266	L.8 L.9	502 530 522	998/1 19/1 91/1 #/1 1			Por enviro Primary	
430	30 32 40	3_0	€ '9	182 180 182	091	35 28 34	011	6 '9 6 '9 6 '2	120 132 500 500	061	01		8.7	182 182 510	073	7t-	410 420 250 ₁	6 9 6 7 6 8	521 500 552 552	019 025 190	40 42 20	061	8.3	182 510 532	91/I 1/I I		isnam pall	отиюэ төЧ үүнийч	46
pJsd	·uį	pJsd	o tri	шш	pJscl	ını.	pJsd	ə, ni	 m m	pjsd	.ni	1	o.ni	шш	pJSd	·ui	pJsd	o ui	шш		ui	pJsd	o, III	шш					
	Conc		puər			1900)	-	puar			ouo,)		 puər		3131	: :500;)		pnar)	910.	ыцо,)	ptarj		ļ	İ			
0101	,40,	Ì	poor		,0.	,		į, (il)	'			j	()						•	1							e of barrier	d.c.	
	(m ç	1.6) 1	n 08			(111-0)	1.6) 1	J 07.			(ui 8	7 (17	y Fl			(III ç	0.6)	IJ 01			(111	M.S)	1J Z		4. <i>L</i> _1		anianed to a	· · · · , į,	
						**		· t	ioute i	adn	 290-0	 . agn	1 uro	11 991	rejst	 a										Ì			
							<u></u>	<u>.</u>		•		<u>.</u>					·						- <u>-</u> -		<u> </u>	 			

a For design levels of 100 mR/week for controlled areas and 10 mR/week for environs, and for a weekly workload of 2000 ma-min.
b C = 18e factor, T = occupancy factor. T is equal to 1 for controlled areas, and may be less than 1 for environs.
c Approximately.
d Pounds per square foot computed from man of lead or in, of concrete and a concrete density of 2.35 g/cc (117 lb/fts).

Table 19. Primary barrier thickness of controls for multimegarolt installations [1]

иЯ	snorizne	081: 01 06 01 9		64 44 19 22	026 016 082 029	89 99 99 84	088 018 029 067	28 29 49 40	210 260 260 460	38 24 74 74	220 220 420 360	98 83 83 83	450 450 340 580	95 83 81 91	280 280 280 310	8 6 8 8	001 110 110 160
no')	БэПот)по' кэтв	081-0V 01 01 9		19 69 64 7	220 250 250 210 210	09 81 04 48	200 200 150 150	40 3 <u>7</u> 31 32 50	420 420 330	67 17 81	350 350 350 350 350	71 21 11	510 182 142 132	† † £ %	20 20 10 52	0 0 0 0	
		2017		·ui	qJsd	.mi	q Jsd	,tıί	q.}sd	'ui	qJSd	,ni	q Jsd	.ni	qJsd	.ni	q J S d
!		odul' Latrotoq	9 9 900 1000 1000 1000	ç 01	89 T 20 E	e 01 07	6.10	2 10 50 40	15.5	80 40 80 80	117	80 30 40 40 20 30	_	01 07 01 08	Í	50 40 80	
			(.L.),11)	(11)	(111)	(11)	(ui)	(11)	(III)	(11)	(ui)	(11)	(u r)	(11)	(ui)	(1)	(m)

 π IF =weekly workload in esu/cc (hielic) at 1 m; U=use factor; T=occupancy factor. T is equal to 1 for controlled areas, and may be less than 1 for environs. It is equal to 1 to 1 [b/h]; U=use factor; U=use factor; T=occupancy factor.

Appendix G. Determination of X-Ray Protective Barrier Thicknesses

The thickness of protective barrier necessary to reduce the exposure rate from any x-ray machine to the maximum permissible level depends upon the quality of the radiation, the quantity being produced in some chosen period of time, the distance from the tube to the occupied area, the degree and nature of the occupancy, the type of area, and the material of which the barrier is constructed. Tables 16 through 20, appendix E, give the thicknesses of lead required under a wide variety of conditions which are commonly met. Occasionally conditions may be encountered which are not covered by the tables. The necessary barrier thickness may then be computed by the use of eqs 1 to 5 and the curves shown in figures 17 to 21 of this appendix.

Computation of Primary Protective Barrier Thicknesses

By definition, primary protective barriers protect against the radiation of the useful beam. It has been found experimentally that the transmission of x rays through thick barriers is closely related to the peak operating potential of the x-ray tube. The filtration added to the useful beam in an x-ray machine is always small in comparison with the attenuation afforded by the barrier, and hence the barrier thickness required at a given kilovoltage is essentially independent of any changes in half-value-layer caused by added filtration in the machine. Thus, it is sufficient, for the purposes of protection calculations, to establish transmission curves specified in kilovolts under conditions of minimum added filtration. It has also been found that at any given kilovoltage and with minimum added filtration the exposure rate produced by any x-ray machine is nearly a constant when expressed in terms of roentgens per milliampere-minute at a distance of 1 m.

Figures 17 through 21 show the exposure rate measured in roentgens per milliampere-minute at a distance of 1 m from the target of the x-ray tube which would be transmitted through barriers of various thicknesses. The ordinate of the figures, given the symbol K, is the transmitted exposure per milliampere-minute at a reference distance of 1 m. The abscissa is the thickness of absorbing material required to give the desired value of K. Families of curves are shown for various kilovoltages and absorbing materials. In order to calculate the required barrier thickness for any set of

		!	Lead Ilii	ekness r	-dune-1	or 11'("	lead thickness required for WCTs and distances from target to occupied area of	istanees	s from tar		reupied ar	Test of		
		(HTCT)	3	(m)	(8)	3	(11)	Ē	· £	- E	- G	(iii)	. (1 8)	(III)
	Pobe potential	000 000 000 000 000 000 000 000 000 00	. 24	3, 05	- 52°		2827	<u>n</u>	. 99892n	27	22920	ı	중 후 중 으	1
	Mey		in,	f)sid	<u>.=</u>	4	. <u>É</u>	j, d	, is	hst.	Ë	Ž	in,	. gsd
	57		1-1- इ.स	3 E E	र क जे में	98 E		88	o se pici	170	22	90 8 0	1 7 0 8	5151
, v	a 22 38		± 12 ± 12	88	7.6	150 380	8 6 8 6	- E E	- 8 - 8	95	क्ट वर्ग क्ट वर्ग	1930	o — rioi	88

Tis equal to 1 for controlled areas, and may be less than 1 for

 π W = weekly workload in esuke further at 1 m; U=use factor; T=occupancy factor, everyons,

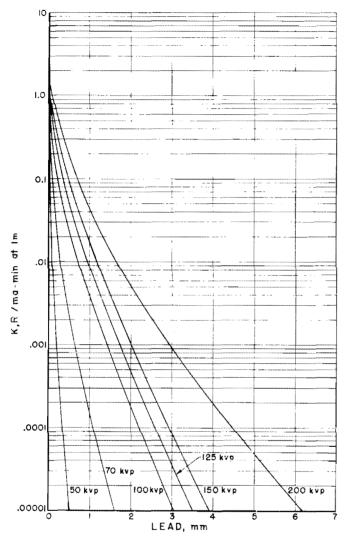


Figure 17. Attenuation in lead of x rays produced by potentials of 50- to 200-kr peak.

The measurements were notele with a 90% augle between the electron beam and the axis α the x-ray beam and with a rathed waveform. The errors at 50 and 70 kyp were obtained by interpolation and extrapolation of available date. Br. strap, 1941-121. The filtrations were 0.5 mm of aluminum for 56, 70, 100, and 125 kyp. \approx 1.3 mm of aluminum for 150 and 200 kyp. [26].

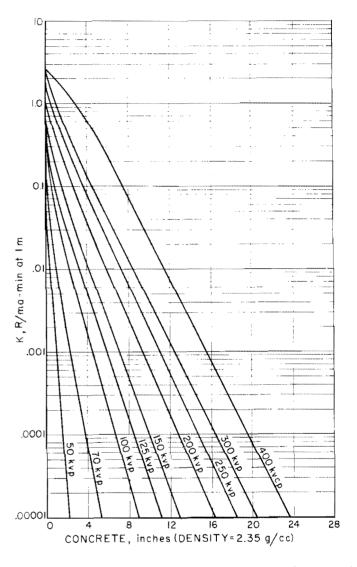


Figure 18. Attenuation in concrete of x rays produced by potentials of 50 to 400 kv.

The measurements were made with a 90° angle between the electron beam and the axis of the x-ray beam. The curves for 50 to 300 kyp are for a pulsed waveform. The filtrations were 1 mm of aluminum for 70 kyp, 2 mm of aluminum for 100 kyp, and 3 mm of aluminum for 125 to 300 kyp (Tront et al., 1955 and 1950 [11]. The 400-kyep curve was interpolated from data obtained with a constant potential generator and inherent filtration of approximately 3 mm of copper (Miller and Kennedy, 1955) [8] [26].

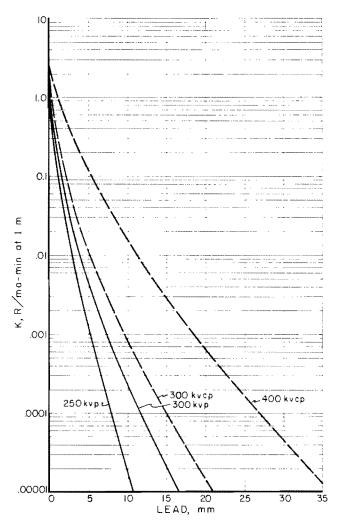


FIGURE 19. Attenuation in lead of x rays produced by potentials of 250 to 400 kv.

The measurements were made with a 90° angle between the electron beam and the axis of the x-ray beam. The 250-kvp curve is for a pulsed waveform and a filtration of 3 mm of aluminum (Braestrup, 1944) [2]. The 400-kvcp curve was obtained with a constant potential generator and inherent filtration of approximately 3 mm of copper (Miller and Keunedy, 1955) [8]. The 300-kvp curve is for pulsed waveform and 3 mm of aluminum (Trout et al., 1959) [11] [26]. The 300-kvcp curve is interpolated and extrapolated from the broad beam data obtained with constant potential (Miller and Kennedy, 1955 [8]).

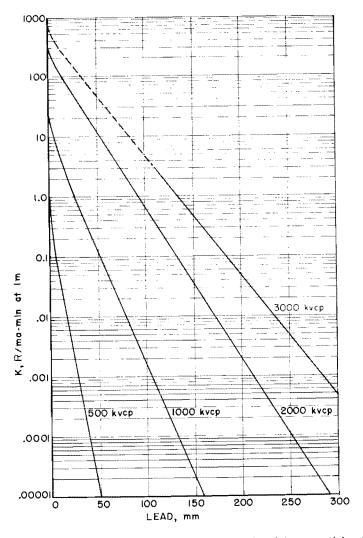


FIGURE 20. Attenuation in lead of x rays produced by potentials of 500- to 3,000-kr constant potential.

The measurements were made with a 0° angle between the electron beam and the axis of the v-ray beam and with a constant potential generator. The 500- and 1,000-kvcp curve were obtained with filtration of 2.88 mm of tangsten, 2.8 mm of copper, 2.1 mm of brass, and 18.7 mm of water (Wycfoff et al., 1948) [13]. The 2,000-kvcp curve was obtained by extrapolating to broat-beam conditions (E.E. Smith) the data of Evans et al., 1952 [3]. The inherent filtration was equivalent to 6.8 mm of lead. The 3,000-kvcp curve has been obtained by interpolation of the 2,000-kvcp curve given herein, and the data of Miller and Kennedy, 1956 [9]. 1956 [9].

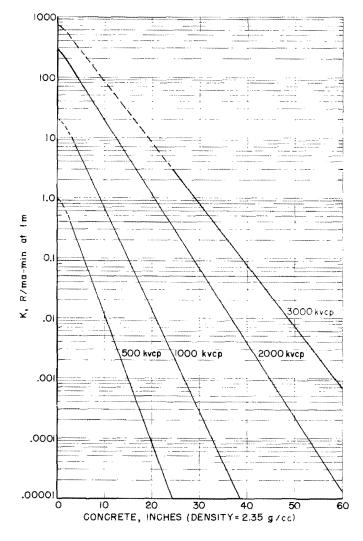


Figure 21. Attenuation in concrete of x rays produced by potentials of 500- to 3,000-kr constant potential.

The measurements were made with a 0° angle between the electron beam and the axis of the x-ray beam and with a constant potential generator. The 500- and 1,000-kvcp curves were obtained with filtration of 2.8 mm of copper, 2.1 mm of brass, and 18.7 mm of water (Wyckoff et a)., 1948–113]. The 2,000-kvcp curve was obtained by extrapolating to broadbeam conditions (E. E. Smith) the data of Evans et al., 1952–13]. The inherent filtration was equivalent to 6.8 mm of lead. The 3,000-kvcp curve has been obtained by interpolation of the 2,000-kvcp curve given herein, and the data of Kirn and Kennedy, 1954 [5].

parameters, it is only necessary to determine the allowed value of K and then to find the corresponding thickness on the appropriate kilovoltage curve for the barrier material which is to be used.

The value of K will depend first of all on the maximum permissible dose which is to be used. For design purposes only, this may be taken to be 100 mR/week for controlled areas and 10 mR/week for environs. Secondly, it will depend upon the workload (W), use factor (U), occupancy factor (T), and the distance (d) from the target to the area of interest. The smaller the product of WUT and the greater the distance, the larger the permitted value of K. Larger WUT values and shorter distances will result in smaller values for K.

The relation between these variables may be expressed by the equation.

$$K = \frac{Pd^2}{WUT'} \tag{1}$$

where

P=Maximum permissible dose equivalent

0.1 R/week for controlled areas

0.01 R/week for environs

d=distance in meters. (If distance in feet is used, this becomes d/3.28.)

W=workload in ma-min/week. (This should, insofar as possible, be averaged over a period of at least several months and preferably a year.)

U=use factor.

T=occupancy factor. (See table 3 of appendix C for suggested values.)

Example:

Find the primary protective barrier thickness necessary to protect a controlled area 32.8 ft from the target of an x-ray machine operating at a maximum energy of 100 kvp. The wall in question has a use factor of 1/4, the workload is estimated to average 1,000 ma-min/week, and the occupancy factor of the area to be protected is 1.

$$P=0.1 \text{ r week}$$

 $d=32.8/3.28=10$
 $W=1,000$
 $U=1/4$
 $T=1$.

$$K = \frac{0.1 \times 100}{1,000 \times 1/4 \times 1} = 0.04$$

Reference to figures 17 and 18 shows that the required barrier thickness is $1\frac{1}{2}$ in. of concrete or 0.4-mm lead.

Attention should be given at this point to the amount of protection which may be supplied by the structural materials of the wall. Often these appreciably attenuate the radiation and can be considered as fulfilling at least part of the barrier requirements. Unfortunately, there are few detailed attenuation data for these materials [12], but to a first approximation, their concrete equivalents may be calculated on the basis of density alone. Concrete equivalent in inches is equal to the density of the material in question multiplied by the thickness of the material in inches and divided by 2.35. When these materials are of higher atomic number than concrete, this approximation tends to underestimate the concrete equivalent (i.e., to lead to somewhat more protection than is needed). Table 14 in appendix D lists some common building materials and the ranges of their densities.

For example, we may assume in the problem just given that there is already 1.0 in, of sand plaster in the wall. Reference to table 14 shows that this material has an average density of 1.54, making a concrete equivalent of 0.65 in, already present. The remaining protection requirement of 0.85 in, of concrete is shown in table 12, appendix D, to be just slightly more than 1 hyl for 100 kyp highly filtered radiation. Thus, the addition of 0.3 mm of lead would amply take care of the situation.

Computation of Secondary Protective Barriers

Again by definition, secondary protective barriers are those exposed only to leakage and scattered radiation. Obviously, the use factor for these radiations is always one. Since these radiations may be of considerably different qualities, their barrier requirements must be computed separately. Furthermore, as the qualities and other factors differ greatly under various combinations of circumstances, there is no single method of computation that is always wholly satisfactory. However, for first approximations, the following rules may be used as guides.

The number of hyl's required in the secondary barrier for leakage radiation alone depends upon: (1) the operating potential of the tube; (2) the weekly operating time of the tube; (3) the distance from the tube to the occupied area; (4) the nature and degree of occupancy; and (5) whether the area in question is a controlled area. The maximum amount of leakage radiation allowed through a tube housing is 1 R at 1 m in any 1 hr. Thus, the workload is measured only in terms of the average number of hours of actual operating time per week. The radiation by passage through the tube housing has already attained a hyl which depends only on the tube potential. Table 12 in appendix D gives representative hyl thicknesses for lead and concrete for various kilovoltages. Table 13 gives the number of hyl's necessary to reduce the exposure rate to the required degree for various weekly operating times and various distances for both controlled areas and environs. The required barrier thickness for leakage radiation alone may be found simply by determining the number of hyl's necessary to reduce the exposure rate to the permissible level for the given distance and operating time and multiplying this number by the thickness of the hvl of lead or concrete for the given kilovoltage. As mentioned before, if building materials other than concrete are used, the necessary thickness may be computed on the basis of their concrete equivalents.

Scattered radiation:

The amount and energy of the scattered radiation depend on a large number of factors. These include the incident exposure rate, the cross-sectional area of the beam at the irradiated object, the absorption in the object, the angle of scattering and the operating potential of the x-ray tube. However, in shielding design certain simplifications can be made. For x rays generated at potentials below 500 ky. Compton scattering does not greatly degrade the photon energy and the scattering object also acts as an absorber for the lower energy photons. For design purposes the 90° scattered radiation generated from a useful beam produced at a potential of less than 500 ky may be assumed to have the same average energy as the useful beam. Consequently, the transmission curve for the useful beam may be used in determining necessary barrier thickness. In the super-

voltage range, the 90° scattered radiation is, to a first approximation, equal in energy distribution to x rays generated by potentials of 500 ky regardless of the kilovoltage of the useful beam. Therefore, in the supervoltage range, the 500 kycp transmission curve may be used in the calculation of the secondary barrier thickness. It has been shown that the amount of 90° scattered radiation is approximately 0.1 percent of that incident upon the scatterer. Thus, a K value 1,000 times greater may be allowed for scattered radiation than for that of the useful beam. However, the exposure rate at a fixed distance increases with the x-ray kilovoltage. Therefore, in order to use the 500 kycp curve for the scattered radiation, K must be decreased by a factor of 20 for 1,000 kycp radiation, by 120 for 2,000 kycp, and by 300 for 3,000 kycp.

Equation (1) may, therefore, be used for the computation of secondary barriers subject to the following modifications:

(a) For scattered radiation from useful beams generated at 500 kyep or below.

$$K = \frac{1,000 \times P \times d^2}{WT}$$
 (Use curve for ky of useful beam). (2)¹

(b) For scattered radiation from useful beams generated at 1,000 kyep,

$$K = \frac{1.000 \times P \times d^2}{20 \text{ W}T}$$
 (Use 500 kycp curve). (3)²

(c) For scattered radiation from useful beams generated at 2,000 kycp.

$$K = \frac{1,000 \times P \times d^2}{120 WT}$$
 (Use 500 kvep curve). (4)²

(d) For scattered radiation from useful beams generated at 3,000 kycp,

$$K = \frac{1.000 \times P \times d^2}{300 \text{ WT}}$$
 (Use 500 kycp curve). (5)²

If the barrier thicknesses for leakage and scattered radiations are found to be approximately the same, 1 hyl should be added to the larger one to obtain the required total secondary barrier thickness. If the two differ by a large enough factor (this situation is assumed to exist if there is a difference of at least 3 hyl's), the thicker of the two will be adequate.

Appendix H. References

- [1] C. B. Braestrup and H. O. Wyckoff, Radiation Protection (Charles Thomas, Publisher, Springfield, Ill., 1958).
- [2] C. B. Braestrup, Industrial radiation hazards, Radiology 43, 286 (1944).
- [3] W. W. Evans, R. C. Gronke, K. A. Wright, and J. G. Trump. Absorption of 2 Mev constant potential roentgen rays by lead and concrete, Radiology 58, 560 (1952). Curves from this paper were extrapolated to broad-beam conditions by E. E. Smith, National Physical Laboratory.
- [4] F. S. Frantz, Jr., and H. O. Wyckoff, Attenuation of scattered cesium-137 gamma rays, Radiology 73, 263 (1959).
- [5] F. S. Kirn and R. J. Kenuedy, Betatron X rays: How much concrete for shielding, Nucleonies 12, 6, 44 (1954).
- [6] R. J. Kennedy, H. O. Wyckoff, and W. A. Snyder, Concrete as a protective barrier for gamma rays from cobalt 60, J. Res. NBS 44, 157 (1950) RP2066.
- [7] F. S. Kirn, R. J. Kennedy, and H. O. Wyckoff, Attenuation of gamma rays at oblique incidence, Radiology 63, 94 (1954).
- [8] W. Miller and R. J. Kennedy, X-ray attenuation in lead, aluminum, and concrete in the range 275-525 ky, Radiology 65, 920 (1955).
- [9] W. Miller and R. J. Kennedy, Attenuation of 86- and 176-Mev synchrotron X rays in concrete and lead, Radiation Research 4, 5, 360 (1956).
- [10] R. T. Mooney and C. B. Braestrup, Attenuation of scattered cobalt-60 radiation in lead and building materials, AEC Report NYO 2165 (1957).
- [11] E. D. Trout, J. P. Kelley, and A. C. Lucas, Broad beam attenuation in concrete for 50- to 300-kvp X rays and in lead for 300kvp X-rays, Radiology 72, 62 (1959).
- [12] E. D. Trout, J. P. Kelley and A. C. Lucas, Conventional building materials as protective radiation barriers, Radiology **76**, 237 (1961).
- [13] H. O. Wyckoff, R. J. Kennedy, and W. R. Bradford, Broad- and narrow-beam attenuation of 500-1,400 ky X rays in lead and concrete, Radiology 51, 849 (1948).
- [14] H. O. Wyckoff and R. J. Kennedy, Concrete as a protective barrier for gamma rays from radium, J. Res. NBS 42, 431 (1949) RP1983.
- [15] V. H. Ritz, Broad and narrow beam attenuation of Ir¹⁹² gamma rays in concrete, steel, and lead. Non-destructive Testing 16, 269 (May-June 1958).
- [16] NBS Circ. 499, Nuclear data (1952).
- [17] National Academy of Sciences-National Research Council, Nuclear Data Sheets (1958)

[:] If a 50-cm ΓSD is used divide K by 4.2 If a 70-cm ΓSD is used divide K by 2.

- [18] Eugene L. Saenger et al., Emergency measures and precautions in radium accidents, J. Am. Med. Assoc. **149**, 813 (1952).
- [19] Background material for the development of radiation protection standards, Staff Report #2 of the Federal Radiation Council (1961).
- [20] Statement on blood counts of National Committee on Radiation Protection, Radiology **63**, 428 (1954); Am. J. Roentgenol. Radium Therapy Nuclear Med. **72**, 510 (1954).
- [21] Release of statements by the National Committee on Radiation Protection and Measurements (NCRP), Am. J. Roentgenology 84, 152 (1960).
- [22] U.S. Atomic Energy Commission, Handbook of federal regulations applying to transportation of radioactive materials (July 1955), AEC Division of Construction and Supply, Traffic Management Section, Washington, D.C.
- [23] NBS Handb. 55, Protection against betatron-synchrotron radiations up to 100 million electron volts (1954).
- [24] NBS Handb. 59, Permissible dose from external sources of ionizing radiation (1954); and 1958 Addendum.
- [25] NBS Handb. 73, Protection against radiations from sealed gamma sources (1960).
- [26] NBS Handb. 76, Medical X-ray protection up to three million volts (1961).
- [27] NBS Handb. 80, A manual of radioactivity procedures (1961).
- [28] NBS Handb. 84, Radiation quantities and units, ICRU Report 10a (1962).
- [29] B. T. Price, C. C. Horton, and K. T. Spinney, Radiation Shielding (Pergamon Press, 122 East 55th Street, New York N.Y., 10022), Figure 6.9.3, p. 304.