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Preface

n the cover a mandala of the laws of physics floats in the

cosmos of reality. It symbolizes the interplay between the

inner world of abstract creation and the outer realms of
measurable truth. The tension between these two is the magic and the
challenge of fundamental physics.

According to Jung, the “squaring of the circle” (the mandala) is the
archetype of wholeness, the totality of the self. Such images are
sometimes created spontaneously by individuals attempting to inte-
grate what seem to be irreconcilable differences within themselves.
Here the mandala displays the modern attempt by particle physicists
to bring together the basic forces of nature in one theoretical
framework.

The content of this so-called standard model is summarized by the
mysterious-looking symbols labeling each force: U(1) for elec-
tromagnetism, SU(2) for weak interactions, SU(3)¢ for strong inter-
actions, and SL(2C) for gravity; each symbol stands for an in-
variance, or symmetry, of nature. Symmetries tell us what remains
constant through the changing universe. They are what give order to
the world. There are many in nature, but those listed on the mandala
are special. Each is a local symmetry, that is, it manifests in-
dependently at every space-time point and therefore implies the
existence of a separate force. In other words, local symmetries
determine all the forces of nature. This discovery is the culmination
of physics over the last century. It is a simple idea, and it turns out to
describe all phenomena so far observed.

Where does particle physics go from here? The major direction of
present research (and a major theme of this issue) is represented by
the spiral that starts at electromagnetism and turns into the center at
gravity. It suggests that the separate symmetries may be encompassed
in one larger symmetry that governs the entire universe—one sym-
metry, one principle, one theory. The spiral also suggests that includ-
ing gravity in such a theory involves understanding the structure of
space-time at unimaginably small distance scales.

Julian Schwinger, whose seminal idea led to the modern unifica-
tion of electromagnetic and weak interactions, regards the present
emphasis on unification with skepticism: “It’s nothing more than
another symptom of the urge that afflicts every generation of
physicists—the itch to have all the fundamental questions answered
in their own lifetime.”* To others the goal seems tantalizingly close,
an achievement that may be reached, if not this year—then maybe
the next. ...

The hope of unification depends on a second theme of this issue,
symbolized by the ants and elephants walking round the mandala.
These creatures are our symbol of scaling, the sizing up and sizing
down of physical systems. Strength (or any other quality, for that
matter) may look different on different scales. But if we look hard

*This quote appeared in “How the Universe Works” by Robert P. Crease and
Charles C. Mann (The Atlantic Monthly, August, 1984), a fast-paced article
about the history of the electoweak theory.
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enough, we can find certain invariances to changes in scale that
define the correct variables for describing a problem. Why do ants
appear stronger than elephants? Why does the strong force look weak
at high energies? How could all the forces of nature be manifestations
of a single theory? These are the questions explored in “Scale and
Dimension—from animals to quarks,” a seductively playful article
that leads us to one of the most important contributions to modern
physics, the renormalization group equations of quantum field the-
ory. The insights about scaling gained from these equations are
important not only to elementary particle physics but also to phase
transition theory and the dynamics of complex systems.

All the articles in this issue were written by scientists who care to
tell not only about their own research but about the whole field of
particle physics, its stunning achievements and its probing questions.
Outsiders to this field hear the names of the latest new particles, the
buzz words such as grand unification or supersymmetry, and the
plans for the United States to regain its leadership in this glamorous,
high tech area of big science. But what is the real progress? Why does
this field continue to attract the best minds in science? Why is it a
major achievement of human thought? From a distance it may be
hard to tell—except that it satisfies some deep urge to understand
how the world works. But if one could be given a closer look at the
technical content of this field, its depth and richness would become
apparent. That is the aim of the present issue.

The hardest job was defining the technical level. How could the
framework of the standard model be appreciated by someone un-
familiar with symmetry principles? How could modern particle
physics research, all of which builds on the standard model, be
understood by someone unfamiliar with what everyone in the field
takes for granted? We hope we have solved this problem by present-
ing some of the major concepts on several levels and in several
different places. We even include our own reference material, a
remarkably clear and friendly set of lecture notes prepared especially
for this issue.

As one who was trained in this field, I returned to it with some
trepidation—to deal with the subject matter, which had been so
difficult, and with the personalitites competing in the field, who
sometimes ride roughshod over each other as they battle these unruly
abstractions. Much to my delight and the delight of the Los 4lamos
Science staff, the experience of preparing this issue was immensely
enjoyable and rewarding. The authors were enthusiastic about ex-
plaining and re-explaining, about considering the essence of each
point one more time to make sure that the readers too would be able
to grasp it. Their generosity and interest made it fun for us to learn.
May this presentation also be a treat for you.

Necia Grant Cooper
1984



Introduction

1974, particle physics has gone through a remarkably produc-

tive and exciting period. Quantum field theory, developed
during the 1940s and ’50s but abandoned in the ’60s, was re-
established as the language for formulating theoretical concepts. The
unification of the weak and electromagnetic interactions via a so-
called non-Abelian gauge theory could only be understood in this
framework. A similar theory of the strong interactions, quantum
chromodynamics, was also constructed during this period, and
nowadays one refers to the total package of the strong and elec-
troweak theories as “the standard model.” Over the last decade the
predictions of the standard model have been spectacularly con-
firmed, so much so that it is now almost taken for granted as
embodying all physics below about 100 GeV. The culmination of this
exuberant period was the inevitable discovery in 1983 of the W+ and
Z9 particles, the massive bosons predicted by the standard model to
mediate the weak interactions. Although the masses of these particles
were precisely those predicted by the SU(2) X U(1) electroweak
theory, their discovery was almost anticlimactic, so accepting had the
particle-physics community become of the standard model. Indeed,
future research in particle physics is often referred to as “physics
beyond the standard model,” an implicit tribute to the progress of the
past decade.

The development of the standard model during the 1970s brought
with it a lexicon of new words and concepts—quark, gluon, charm,
color, spontaneous symmetry breaking, and asymptotic freedom, to
name a few. Supersymmetry, preons, strings, and worlds of ten
dimensions are among the buzz words added in the *80s. While
scientists, engineers, and even many lay people will recognize some
subset of these words, only a few have more than a superficial
understanding of the profound achievement they denote. Add to this
the demand by particle physicists for several billion dollars to build a
super-accelerator in order to explore “physics beyond the standard
model,” and one can sense the gap between the particle physicist and
his “public” reaching irreparable proportions. On the other hand
there remains an endless wonder and fascination in the public’s eye
for such speculative conceptual ideas, which are more usually as-
sociated with the literature of science fiction than with Physical
Review.

It was with some of these thoughts in mind that a group of us at
Los Alamos National Laboratory decided to put together a series of
pedagogical articles explaining in relatively elementary scientific
language the accomplishments, successes, and projected future of
high-energy physics. The articles, intended for a wide scientific

B eginning with the dramatic discovery of the J/y particle in

audience, originally appeared in a 1984 issue of Los Alamos Science,
a technical publication of the Laboratory. Since that time they have
been used as a teaching tool in particle-physics courses and as a
reference source by experimentalists in the field.

Farticle Physics—A Los Alamos Primer is basically an updated
version of the original Los Alamos Science issue. We believe it will
continue to help educate undergraduate and graduate students as
well as bridge the gap between experimentalists and theorists. We are
also confident that it will help non-experts to develop a good feel for
the subject.

The text consists of eight “chapters,” the first five devoted to the
concepual framework of modern particle physics and the iast three to
experiments and accelerators. Each is written by a separate author, or
group of authors, and is to a large extent self-contained. In addition,
we have included a round table among several particle physicists that
addresses some of the broader issues facing the field. This discussion
is in some ways a unique evaluation of the present status of particle
physics. It is quite personal and idiosyncratic, sometimes irreverent,
and occasionally controversial. For the non-expert it is probably the
place to begin!

The first article addresses the question of scaling. In its broadest
sense this lies at the heart of any attempt to unify into one theory the
fundamental forces of Nature—forces seemingly so very different in
strength. “Scale and Dimension—From Animals to Quarks” begins
by reviewing in an elementary and somewhat whimsical fashion the
whole question of scale in classical physics and then introduces the
more sophisticated concept of the renormalization group. The re-
normalization group is really no more than a generalization of
classical dimensional analysis to the area of quantum field theory: it
answers the seminal question of how a physical system responds to a
change in scale. The concept plays a central role in the modern view
of quantum field theory and has been particularly successful in
elucidating the nature of phase transitions. Indeed, it is from this
vantage point that the intimate relationship between particle and
condensed-matter physics has developed. Clearly, the manner in
which physics evolves from one energy or length scale to another is of
fundamental importance.

The second article, “Particle Physics and the Standard Model,”
addresses the question of unification with an elementary yet com-
prehensive discussion of how the famous electroweak theory is
constructed and works. The role of internal symmetries and their
incorporation into a principle of local gauge invariance and subse-
quent manifestation as a non-Abelian gauge field theory are ex-
plained in a pedagogical fashion. The other component of the
standard model, namely quantum chromodynamics (QCD), the
theory of the strong interactions, is similarly treated in this article.
Again, the discussion is rather elementary, beginning with an expo-
sition of the *“old” SU(3) of the “Eightfold Way” and finishing with
the field theory of quarks and gluons. For the more ambitious reader
we have included a set of “lectures” by Richard Slansky that give

ix



some of the technical details necessary in going “from simple field
theories to the standard model.” Crucial concepts such as local gauge
invariance, spontaneous symmetry breaking, and emergence of the
Higgs particles that give rise to the masses of elementary particles are
expressed in the mathematical language of field theory and should be
readily accessible to the serious student of the field. These lectures
are very clear and provide the reader with the explicit equations
embodying the physics discussed in the article on the standard
model.

Following this review of accepted lore, we begin our journey into
“physics beyond the standard model” with an essay on supergravity
by Slansky entitled “Toward a Unified Theory.” In it he discusses
some of the speculative ideas that gained popularity in the late 1970s.
Among them are supersymmetry (a proposed symmetry between
fermions and bosons) and the embedding of our four-dimensional
space-time world in a larger number of dimensions. Supergravity, a
theory that encompasses both of these ideas, was the first serious
attempt to include Einstein’s gravity in the unification scheme. This
article also includes a description of superstring theory, which has
gained tremendous popularity just in the last year or so. Slansky
explains how the shortcomings of the supergravity scenario are
circumvented by basing a unified theory on elementary fibers, or
strings, rather than on point particles. This area of research is in a
state of flux at the moment, and it is still far from clear whether
strings really will form the basis of the “final” theory. The problems
are both conceptual and technical. Conceptually there is still no hint
as to what principles are to replace the equivalence principle and
general coordinate invariance, which form the bases of Einstein’s
gravity. Technically, the mathematics of string theory is beyond the
usual expertise of the theoretical physicist; indeed it is on the
forefront of mathematical research itself. This may be the first time
for a hundred years or more that research in physics and
mathematics has coincided. Some may view this as a bad omen,
others as the dawning of a new exciting age leading to the equations
of the universe! Only time will tell.

A less ambitious use of supersymmetry has been in the attempts
to unify, without gravity, the electroweak and strong theories of the
standard model. Stuart Raby, in his article “Supersymmetry at
100 GeV,” discusses some of these efforts by concentrating on the
phenomenological implications of a world in which every boson
has a fermion partner and vice versa. These include a possible
explanation for why proton decay, certainly one of the more
dramatic predictions of grand unified theories, has not yet been
seen. Supersymmetric phenomenology has served as an important
guide for speculating about what can be seen at new accelerators. A
special feature of this article is the self-contained section “Super-
symmetry in Quantum Mechanics,” in which Raby explains this
novel space-time symmetry in a setting stripped of all field-theo-
retic baggage.

One of the more mysterious problems in particle physics is “the

family problem” described in an article of that title by Terry
Goldman and Michael Nieto. The apparent replication of the
electron and its neutrino in at least two more families differing only
in their mass scales has remained a mystery ever since the discovery
of the muon. This replication, exhibited also by the quarks, can be
accommodated in unified theories, though no satisfactory expla-
nation of the family structure, nor even a prediction of the total
number of families, has been advanced. The phenomenology of this
problem as well as some attempts to understand it are carefully
reviewed. An addendum to the original article presents a slightly
more technical discussion of how experiments involving the third
quark family might extend our knowledge of CP violation. This
symmetry violation remains perhaps the most mysterious aspect of
the known particle phenomenology.

The next three articles concern the experimental side of particle
physics. Although the choice of Los Alamos experiments to illustrate
certain points does reflect some parochial interests of the authors,
these articles succeed in providing a broad overview of experimental
methodology. In this era of elaborate detection techniques requiring
extensive collaboration, it is often difficult for the uninitiated to
unravel the complicated machinations that are involved in the
experimental process. In “Experiments to Test Unification Schemes”
Gary Sanders presents a very clear exposition of the physics input to
this process. Indeed, as if to emphasize the departure from the world
of theory, he has included a brief page-and-a-half précis subtitled “An
Experimentalist’s View of the Standard Model.” For the beginner this
might be read immediately following the round table! Sanders de-
scribes in some detail four experiments designed specifically to test
the standard model, all being conducted at Los Alamos. Each is a
“high-precision™ experiment in which, say, a specific decay rate is
measured and compared with the value predicted by the standard
model. These experiments are prototypical of the kind that have been
and will continue to be done at accelerators around the world to push
the theory to its limits. Most exciting, or course, would be the
observation of some deviation from the standard model that could be
associated with grand unification. However, in an addendum Sand-
ers reports that no such deviations were seen in the data from the Los
Alamos experiments and others. So far the standard model has stood
the test of time.

The following article by Peter Rosen, “The March toward Higher
Energies,” surveys the high-energy accelerator landscape beginning
with a historical perspective and finishing with a glimpse into what
we might expect in the not-too-distant future. The emphasis here is
on tests of the standard model and searches for new and exotic
particles not included in it. The traditional methodology is quite
simple: go for the highest energy possible. This has certainly been
successful in the past, and we have no reason to believe that it won’t
be successful in the future. Thus, there is a push to build a giant
superconducting supercollider (SSC) that could probe mass scales in
excess of 20 TeV, or 2 X 10" eV. We have also included a brief



report by Mahlon Wilson, an accelerator physicist, on some of the
problems peculiar to the gigantic scale of the SSC.

An alternative technique for probing high mass scales is to perform
very accurate experiments in search of deviations from expected
results, such as those described in Sanders’ article. Obviously, high-
intensity beams are the desired tool in this approach. A high-intensity
machine has been proposed for Los Alamos, and another brief report
by Henry Thiessen, also an accelerator physicist, describes that
machine and some of the questions it might answer. The reports on
the SSC and LAMPF 1I provide an idea of what is involved in
designing tomorrow’s accelerators.

The final article is a review by Mike Simmons on “science under-
ground.” In it he discusses what particle physics can be learned from
experiments performed deep underground to isolate rare events of

interest. The most famous of these is the search for proton decay.
Other experiments measure the flux of neutrinos from the sun and
search for exotic particles (such as magnetic monopoles) in cosmic
rays. These essential fishing expeditions use “beams” from the
biggest accelerator of them all, namely the universe!

Particle Physics—A Los Alamos Primer thus provides the reader
with a comprehensive, up-to-date introduction to the field of particle
physics. Our belief is that it will be a useful educational guide to both
the student and professional worker in the field as well as provide the
general scientist with an insight into some of the recent accomplish-
ments in understanding the fundamental structure of the universe.

In conclusion we would like to thank the staff of Los Alamos
Science for their invaluable help in making this primer lively and
accessible to a wide audience.

Geoffrey B. West
1986
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“I have multiplied visions and used similitudes.” — Hosea 7:10

In his marvelous book Dialogues Concerning
Two New Sciences there is a remarkably clear
discussion on the effects of scaling up the
dimensions of a physical object. Galileo re-
alized that if one simply scaled up its size, the
weight of an animal would increase signifi-
cantly faster than its strength, causing it ul-
timately to collapse. As Galileo says (in the
words of Salviati during the discorso of the
second day), “. . . you can plainly see the
impossibility of increasing the size of struc-
tures to vast dimensions . . . if his height be
increased inordinately, he will fall and be
crushed under his own weight.” The simple

scaling up of an insect to some monstrous
size i1s thus a physical impossibility, and we
can rest assured that these old sci-fi images
are no more than fiction! Clearly, to create a
giant one “must either find a harder and
stronger material . . . or admit a diminution
of strength,” a fact long known to architects.

It is remarkable that so many years before
its deep significance could be appreciated,
Galileo had investigated one of the most
fundamental questions of nature: namely,
what happens to a physical system when one
changes scale? Nowadays this is the seminal
question for quantum field theory, phase

transition theory, the dynamics of complex
systems, and attempts to unify all forces in
nature. Tremendous progress has been made
in these areas during the past fifteen years
based upon answers to this question, and 1
shall try in the latter part of this article to give
some flavor of what has been accomplished.
However, I want first to remind the reader of
the power of dimensional analysis in
classical physics. Although this is stock-in-
trade to all physicists, it is useful (and, more
pertinently, fun) to go through several exam-
ples that explicate the basic ideas. Be warned,
there are some surprises.

Classical Scaling

Let us first re-examine Galileo’s original
analysis. For similar structures* (that is,
structures having the same physical
characteristics such as shape, density, or
chemical composition) Galileo perceived
that weight W increases linearly with volume
V, whereas strength increases only like a
cross-sectional area A. Since for similar
structures ¥ o« P and 4 « /2, where / is some
characteristic length (such as the height of the
structure), we conclude that

Strength A4 {

I
Weight ~ V=T gan-

(M

Thus, as Galileo noted, smaller animals “ap-
pear” stronger than larger ones. (It is amus-
ing that Jerome Siegel and Joe Shuster, the
creators of Superman, implicitly appealed to
such an argument in one of the first issues of
their comic.! They rationalized his super
strength by drawing a rather dubious analogy
with “the lowly ant who can support weights
hundreds of times its own” (sic!).) Inciden-
tally, the above discussion can be used to
understand why the bones and limbs of
larger animals must be proportionately
stouter than those of smaller ones, a nice
example of which can be seen in Fig. 1.
Arguments of this sort were used ex-
tensively during the late 19th century to un-
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Scale and Dimension

Fig. 1. Two extinct mammals: (a) Neohipparion, a small American horse and (b)
Mastodon, a large, elephant-like animal, illustrating that the bones of heavier
animals are proportionately stouter and thus proportionately stronger.

derstand the gross features of the biological
world; indeed, the general size and shape of
animals and plants can be viewed as nature’s
way of responding to the constraints of grav-
ity, surface phenomena, viscous flow, and
the like. For example, one can understand
why man cannot fly under his own muscular
power, why small animals leap as high as
larger ones, and so on.

A classic example is the way metabolic
rate varies from animal to animal. A
measure B of metabolic rate is simply the
heat lost by a body in a steady inactive state,
which can be expected to be dominated by
the surface effects of sweating and radiation.
Symbolically, therefore, one expects
B« W3 The data (plotted logarithmically
in Fig. 2) show that metabolic rate does

*The concept of similitude is usually attributed to
Newton, who first spelled it out in the Principia
when dealing with gravitational attraction. On
reading the appropriate section it is clear that this
was introduced only as a passing remark and does
not have the same profound content as the remarks
of Galileo.

}This amusing observation was brought to my atten-
tion by Chris Llewellyn Smith.

$This relationship with a slope of 3/4 is known as
Kleiber’s law (M. Kleiber, Hilgardia 6(1932):315),
whereas the area law is usually attributed to Rubner
(M. Rubner, Zeitschrift fur Biologie (Munich)
19(1883):535).

indeed scale, that is, all animals lie on a
single curve in spite of the fact that an
elephant is neither a blown-up mouse nor a
blown-up chimpanzee. However, the slope of
the best-fit curve (the solid line) is closer to
3/4 than to 2/3, indicating that effects other
than the pure geometry of surface de-
pendence are at work.}

It is not my purpose here to discuss why
this is so but rather to emphasize the im-
portance of a scaling curve not only for estab-
lishing the scaling phenomenon itself but for
revealing deviations from some naive
prediction (such as the surface law shown as
the dashed line in Fig. 2). Typically, devia-
tions from a simple geometrical or
kinematical analysis reflect the dynamics of
the system and can only be understood by
examining it in more detail. Put slightly dif-
ferently, one can view deviations from naive
scaling as a probe of the dynamics.

The converse of this is also true: generally,
one cannot draw conclusions concerning
dynamics from naive scaling. As an illustra-
tion of this I now want to discuss some
simple aspects of birds’ eggs. I will focus on
the question of breathing during incubation
and how certain physical variables scale
from bird to bird. Figure 3, adapted from a
Scientific American article by Hermann
Rahn, Amos Ar, and Charles V. Paganelli

entitled “How Bird Eggs Breathe,” shows the
dependence of oxygen conductance K and
pore length / (that is, shell thickness) on egg
mass W. The authors, noting the smaller
slope for /, conclude that “pore length
probably increases slower because the egg-
shell must be thin enough for the embryo to
hatch.” This is clearly a dynamical con-
clusion! However, is it warranted?

From naive geometric scaling one expects
that for similar eggs ! o« W' which is in
reasonable agreement with the data: a best fit
(the straight line in the figure) actually gives /
oc W94, Since these data for pore length agree
reasonably well with geometric scaling, no
dynamical conclusion (such as the shell be-
ing thin enough for the egg to hatch) can be
drawn. Ironically, rather than showing an
anomalously slow growth with egg mass, the
data for / actually manifest an anomalously
fast growth (0.4 versus 0.33), not so dis-
similar from the example of the metabolic
rate!

What about the behavior of the conduc-
tance, for which X o« W99 This relationship
can also be understood on geometric
grounds. Conductance is proportional to the
total available pore area and inversely
proportional to pore length. However, total
pore area is made up of two factors: the total
number of pores times the area of individual
pores. If one assumes that the number of
pores per unit area remains constant from
bird to bird (a reasonable assumption consis-
tent with other data), then we have two
factors that scale like area and one that




scales inversely as length. One thus expects
K o (W3 W13 = W, again in reasonable
agreement with the data.

Dimensional Analysis. The physical con-
tent of scaling is very often formulated in
terms of the language of dimensional analy-
sis. The seminal idea seems to be due to
Founer. He is, of course, most famous for the
invention of “Fourier analysis,” introduced
in his great treatise Theorie Analytique de la
Chaleur, first published in Paris in 1822.
However, it is generally not appreciated that
this same book contains another great con-
tribution, namely, the use of dimensions for
physical quantities. It is the ghost of Fourier
that is the scourge of all freshman physics
majors, for it was he who first realized that
every physical quantity “has one dimension
proper to itself, and that the terms of one and
the same equation could not be compared, if
they had not the same exponent of
dimension.” He goes on: “We have in-
troduced this consideration . . . to verify the
analysis . . . it is the equivalent of the funda-
mental lemmas which the Greeks have left us
without proof.” Indeed it is! Check the
dimensions!—the rallying call of all
physicists (and, hopefully, all engineers).
However, it was only much later that
physicists began to use the “method of
dimensions” to solve physical problems. In a
famous paper on the subject published in
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line) whereas the actual scaling curve has a slope equal to 3/4. Such deviation from
simple geometrical scaling is indicative of other effects at work. (Figure based on
one by Thomas McMahon, Science 179(1973):1201-1204 who, in turn, adapted it
from M. Kleiber, Hilgardia 6(1932):315.)
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Fig. 3. Logarithmic plot of two parameters relevant to the breathing of birds’ eggs
during incubation: the conductance of oxygen through the shell and the pore length
(or shell thickness) as a function of egg mass. Both plots have slopes close to those
predicted by simple geometrical scaling analyses. (Figure adapted from H. Rahn,
A. Ar, and C. V. Paganelli, Scientific American 240(February 1979):46-55.)
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Nature in 1915, Rayleigh indignantly begins:
“I have often been impressed by the scanty
attention paid even by original workers in
the field to the great principle of similitude.
It happens not infrequently that results in the
form of ‘laws’ are put forward as novelties on
the basis of elaborate experiments, which
might have been predicted a priori after a few
minutes consideration!” He then proceeds to
set things right by giving several examples of
the power of dimensional analysis. It scems
to have been from about this time that the
method became standard fare for the
physicist. I shall illustrate it with an amusing
example.

Most of us are familiar with the traditional
Christmas or Thanksgiving problem of how
much time to allow for cooking the turkey or
goose. Many (inferior) cookbooks simply say
something like “20 minutes per pound,” im-
plying a linear relationship with weight.
However, there exist superior cookbooks,
such as the Better Homes and Gardens
Cookbook, that recognize the nonlinear
nature of this relationship.

Figure 4 is based on a chart from this
cookbook showing how cooking time ¢ varies
with the weight of the bird W. Let us see how

Fig. 4. The cooking time for a turkey or
goose as a logarithmic function of its
weight. (Based on a table in Better
Homes and Gardens Cookbook, Des
Moines:Meridith Corp., Better Homes
and Gardens Books, 1962, p. 272.)

one can understand this variation using “the
great principle of similitude.” Let T be the
temperature distribution inside the turkey
and Ty the oven temperature (both measured
relative to the outside air temperature). 7'
satisfies Fourier’s heat diffusion equation:
aT/at =« V2T, where k is the diffusion coeffi-
cient. Now, in general, for the dimensional/
quantities in this problem, there will be a
functional relationship of the form

T=f(T05 W’ L o8 K) ) (2)

where p is the bird’s density. However,
Fourier’s basic observation that the physics
be independent of the choice of units, imposes
a constraint on the form of the solution,
which can be discerned by writing it in terms
of dimension/ess quantities. Only two inde-
pendent dimensionless quantities can be
constructed: T/Tq and p(xf)**/W. If we use
the first of these as the dependent variable,
the solution, whatever its form, must be
expressible in terms of the other. The rela-
tionship must therefore have the structure

T 32
plx?)
— = . 3
To f ( w ) 3

The important point is that, since the left-
hand side is dimensionless, the “arbitrary”
function f must be a dimensionless function
of a dimensionless variable. Equation 3, un-
like the previous one, does not depend upon

the choice of units since dimensionless quan-
tities remain invariant to changes in scale.

Let us now consider different but
geometrically similar birds cooked to the
same temperature distribution at the same
oven temperature. Clearly, for all such birds
there will be a scaling law

p(xt)*?

7 constant . 4)

If the birds have the same physical
characteristics (that is, the same p and ), Eq.
4 reduces to

t = constant X W3, (5)

reflecting, not surprisingly, an area law, As
can be seen from Fig. 4, this agrees rather
well with the “data.”

This formal type of analysis could also, of
course, have been carried out for the
metabolic rate and birds’ eggs problems. The
advantage of such an analysis is that it de-
lineates the assumptions made in reaching
conclusions like B « W3 since, in principle,
it focuses upon all the relevant variables.
Naturally this is crucial in the discussion of
any physics problem. For complicated sys-
tems, such as birds’ eggs, with a very large
number of variables, some prior insight or
intuition must be used to decide what the
important variables are. The dimensions of
these variables are determined by the funda-
mental laws that they obey (such as the dif-
fusion equation). Once the dimensions are
known, the structure of the relationship be-
tween the variables is determined by
Fourier’s principle. There is therefore no
magic in dimensional analysis, only the art of
choosing the “right” variables, ignoring. the
irrelevant, and knowing the physical laws
they obey.

As a simple example, consider the classic
problem of the drag force F on a ship moving
through a viscous fluid of density p. We shall
choose F, p, the velocity v, the viscosity of the
fluid p, some length parameter of the ship /,
and the acceleration due to gravity g as our

7



Fig. 5. The scaling curve for the motion of a sphere through a
fluid that results when data from a variety of experiments
are plotted in terms of two dimensionless variables: the

8

Pressure Coefficient P

variables. Notice that we exclude other
variables, such as the wind velocity and the
amplitude of the sea waves because, under
calm conditions, these are of secondary im-
portance. Our conclusions may therefore not
be valid for sailing ships!

The physics of the problem is governed by
the Navier-Stokes equation (which in-
corporates Newton’s law of viscous drag,
telling us the dimensions of p) and the gravi-
tational force law (telling us the dimensions
of g). Using these dimensions automatically
incorporates the appropriate physics. Since
we have limited the variables to a set of six,
which must be expressible in terms of three
basic units (mass M, length L, and time T),
there will only be three independent
dimensionless combinations. These are

chosen to be P = F/pv?/? (the pressure coeffi-
cient), R = vip/n (Reynold’s number), and
Ng = v?/lg (Froude’s number). Although any
three similar combinations could have been
chosen, these three are special because they
delineate the physics. For example, Rey-
nold’s number R relates to the viscous drag
on a body moving through a fluid, whereas
Froude’s number Ny relates to the forces
involved with waves and eddies generated on
the surface of the fluid by the movement.
Thus the rationale for the combinations R
and Nr is to separate the role of the viscous
forces from that of the gravitational: R does
not depend on g, and F does not depend on
p. Furthermore, P does not depend on either!

Dimensional analysis now requires that
the solution for the pressure coefficient,

108
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pressure or drag coefficent P versus Reynolds number R.
(Figure adapted from AIP Handbook of Physics, 2nd edi-
tion (1963 ):section I1, p. 253.)
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whatever it is, must be expressible in the
dimensionless form
P=f(R Nr). (6)
The actual drag force F can easily be ob-
tained from this equation by re-expressing it
in terms of the dimensional variables (see
Eq. 8 below).

First, however, consider a situation where
surface waves generated by the moving ob-
ject are unimportant (an extreme example is
a submarine). In this case g will not enter the
solution since it is manifested as the restor-
ing force for surface waves. Nr can then be
dropped from the solution, reducing Eq. 6 to
the simple form

P=f(R). ()
In terms of the original dimensional
variables, this is equivalent to

F=pV P flvlp/p) . (8)

Historically, these last equations have been
well tested by measuring the speed of dif-
ferent sizes and types of balls moving
through different liquids. If the data are
plotted using the dimensionless variables,
that is, P versus R, then a// the data should lie
on just one curve regardless of the size of the
ball or the nature of the liquid. Such a curve
is called a scaling curve, a wonderful example
of which is shown in Fig. 5 where one sees a
scaling phenomenon that varies over seven
orders of magnitude! It is important to recog-
nize that if one had used dimensional
variables and plotted F versus /, for example,
then, instead of a single curve, there would
have been many different and apparently
unrelated curves for the different liquids.
Using carefully chosen dimensionless
variables (such as Reynold’s number) is not
only physically more sound but usually
greatly simplifies the task of representing the
data.

A remarkable consequence of this analysis
is that, for similar bodies, the ratio of drag
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Fig. 6. The time needed for a rowing boat to complete a 2000-meter course in calm
cg’nditions as a function of the number of oarsmen. Data were taken from several
international rowing championship events and illustrate the surprisingly slow
dropoff predicted by modeling theory. (Adapted from T. A. McMahon, Science

173(1971):349-351.)

force to weight decreases as the size of the
structure increases. From Archimedes’ prin-
ciple the volume of water displaced by a ship
is proportional to its weight, that is, W o« P
(this, incidentally, is why there is no need to
include W as an independent variable in
deriving these equations). Combined with
Eq. 8 this leads to the conclusion that

F 1

— o —

7 ©)

This scaling law was extremely important in
the 19th century because it showed that it
was cost effective to build bigger ships,
thereby justifying the use of large iron steam-
boats!

The great usefulness of scaling laws is also
illustrated by the observation that the
behavior of P for large ships (/ — «) can be
derived from the behavior of small ships
moving very fast (v — ). This is so because
both limits are controlled by the same
asymptotic behavior of f{R) = f{vip/p). Such
observations form the basis of modeling the-
ory so crucial in the design of aircraft, ships,
buildings, and so forth.

Thomas McMabhon, in an article in Sci-
ence, has pointed out another, somewhat
more amusing, consequence to the drag force
equation. He was interested in how the speed
of a rowing boat scales with the number of
oarsmen »n and argued that, at a steady veloc-
ity, the power expended by the oarsmen E to
overcome the drag force is given by Fv. Thus

E=Fv=p»LAR). (10)



Using Archimedes’ principle again and the
fact that both £ and W should be directly
proportional to n leads to the remarkable
scaling law’
van'?, (11)
which shows a very slow growth with n.
Figure 6 exhibits data collected by McMahon
from various rowing events for the time ¢ (e
1/v) taken to cover a fixed 2000-meter course
under calm conditions. One can see quite
plainly the verification of his predicted

law—a most satisfying result!
There are many other fascinating and

exotic examples of the power of dimensional
analysis. However, rather than belaboring
the point, I would like to mention a slightly
different application of scaling before I turn
to the mathematical formulation. All the ex-
amples considered so far are of a quantitative
nature based on well-known laws of physics.
There are, however, situations where the
qualitative observation of scaling can be
used to scientific advantage to reveal phe-
nomenological “laws.”

A nice example (Fig. 7), taken from an
article by David Pilbeam and Stephen Jay
Gould, shows how the endocranial volume V
(loosely speaking, the brain size) scales with
body weight W for various hominids and
pongids. The behavior for modern pongids is
typical of most species in that the exponent
a, defined by the phenomenological rela-
tionship V < W7 is approximately 1/3 (for
mammals a varies from 0.2 to 0.4). It is very
satisfying that a similar behavior is exhibited
by australopithecines, extinct cousins of our
lineage that died out over a million years ago.
However, as Pilbean and Gould point out,
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our homo sapiens lineage shows a strikingly
different behavior, namely: a = 5/3. Notice
that neither this relationship nor the “stan-
dard” behavior (a = 1/3) is close to the naive
geometrical scaling prediction of a = 1.

These data illustrate dramatically the
qualitative evolutionary advance in the
brain development of man. Even though the
reasons for a = 1/3 may not be understood,
this value can serve as the “standard” for
revealing deviations and provoking specula-
tion concerning evolutionary progress: for
example, what is the deep significance of a
brain size that grows linearly with height
versus a brain size that grows like its fifth
power? I shall not enter into such questions
here, tempting though they be.

Such phenomenological scaling laws
(whether for brain volume, tooth area, or
some other measurable parameter of the fos-

sil) can also be used as corroborative
evidence for assigning a newly found fossil of
some large primate to a particular lineage.
The fossil’s location on such curves can, in
principle, be used to distinguish an australo-
pithecine from a homo. Notice, however,
that implicit in all this discussion is knowl-
edge of body weight; presumably,
anthropologists have developed verifiable
techniques for estimating this quantity. Since
they necessarily work with fragments only,
some further scaling assumptions must be
involved in their estimates!

Relevant Variables. As already emphasized,
the most important and artful aspect of the
method of dimensions is the choice of
variables relevant to the problem and their
grouping into dimensionless combinations
that delineate the physics. In spite of the
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Fig. 7. Scaling curves for endocranial volume (or brain size) as a function of body
weight. The slope of the curve for our homo sapiens lineage (dashed line) is
markedly different from those for australopithecines, extinct cousins of the homo
lineage, and for modern pongids, which include the chimpanzee, gorilla and

orangutan.
186(1974):892-901.)

(Adapted from D. Pilbeam and S. J. Gould, Science



Scale and Dimension

relative simplicity of the method there are
inevitably paradoxes and pitfalls, a famous
case of which occurs in Rayleigh’s 1915
paper mentioned earlier. His last example
concerns the rate of heat lost H by a conduc-
tor immersed in a stream of inviscid fluid
moving past it with velocity v (“Boussinesq’s
problem”). Rayleigh showed that, if K is the
heat conductivity, C the specific heat of the
fluid, 0 the temperature difference, and /
some linear dimension of the conductor,
then, in dimensionless form,

H hC
k79=f(7 ) (12)

Approximately four months after Ray-
leigh’s paper appeared, Nature published an
eight line comment (half column, yet!) by a
D. Riabouchinsky pointing out that Ray-
leigh’s result assumed that temperature was a
dimension independent from mass, length,
and time. However, from the kinetic theory
of gases we know that this is not so: tempera-
ture can be defined as the mean kinetic
energy of the molecules and so is not an
independent unit! Thus, according to
Riabouchinsky, Rayleigh’s expression must
be replaced by an expression with an addi-
tional dimensionless variable:

H C

a much /ess restrictive result.

Two weeks later, Rayleigh responded to
Riabouchinsky saying that “it would indeed
be a paradox if the further knowledge of the
nature of heat afforded by molecular theory
put us in a worse position than before in
dealing with a particular problem. . . . It
would be well worthy of discussion.” Indeed
it would; its resolution, which no doubt the
reader has already discerned, is left as an
exercise (for the time being)! Like all
paradoxes, this one cautions us that we oc-
casionally make casual assumptions without
quite realizing that we have done so (see
“Fundamental Constants and the Rayleigh-
Riabouchinsky Paradox™).

Scale Invariance

Let us now turn our attention to a slightly
more abstract mathematical formulation
that clarifies the relationship of dimensional
analysis to scale invariance. By scale in-
variance we simply mean that the structure
of physical laws cannot depend on the choice
of units. As already intimated, this is auto-
matically accomplished simply by employ-
ing dimensionless variables since these
clearly do not change when the system of
units changes. However, it may not be im-
mediately obvious that this is equivalent to
the form invariance of physical equations.
Since physical laws are usually expressed in
terms of dimensional variables, this is an
important point to consider: namely, what
are the general constraints that follow from
the requirement that the laws of physics look
the same regardless of the chosen units. The
crucial observation here is that implicit in
any equation written in terms of dimensional
variables are the “hidden” fundamental
scales of mass M, length L, time T, and so
forth that are relevant to the problem. Of
course, one never actually makes these scale
parameters explicit precisely because of form
invariance.

Our motivation for investigating this
question is to develop a language that can be
generalized in a natural way to include the
subtleties of quantum field theory. Hopefully
classical dimensional analysis and scaling
will be sufficiently familiar that its gen-
eralization to the more complicated case will
be relatively smooth! This generalization has
been named the renormalization group since
its origins Ne in the renormalization program
used to mah(e sense out of the infinities in-
herent in quantum field theory. It turns out
that renormalization requires the introduc-
tion of a new arbitrary “hidden’” scale that
plays a role similar to the role of the scale
parameters implicit in any dimensional
equation. Thus any equation derived in
quantum field theory that represents a physi-
cal quantity must not depend upon this
choice of hidden scale. The resulting con-

straint will simply represent a generalization
of ordinary dimensional analysis; the only
reason that it is different is that variables in
quantum field theory, such as fields, change
in a much more complicated fashion with
scale than do their classical counterparts.

Nevertheless, just as dimensional analysis
allows one to learn much about the behavior
of a system without actually solving the
dynamical equations, so the analogous con-
straints of the renormalization group lead to
powerful conclusions about the behavior of a
quantum field theory without actually being
able to solve it. It is for this reason that the
renormalization group has played such an
important part in the renaissance of quan-
tum field theory during the past decade or so.
Before describing how this comes about, I
shall discuss the simpler and more familiar
case of scale change in ordinary classical
systems.

To begin, consider some physical quantity
F that has dimensions; it will, of course, be a
function of various dimensional variables
xi: F(xy,x2, . . .,xn). An explicit example is
given by Eq. 2 describing the temperature
distribution in a cooked turkey or goose.

11



Fundamental Constants and the

and show how its resolution is related to choosing a system of

Let us examine Riabouchinsky’s paradox a little more carefully

units where the “fundamental constants™ (such as Planck’s
constant 4 and the speed of light ¢) can be set equal to unity.
The paradox had 1o do with whether temperature could be used as
“an independent dimensional unit even though it can be defined as the
mean kinetic energy of the molecular motion. Rayleigh had chosen
five physical variables (length /, temperature difference 6, velocity v,
specific heat €, and heat conductivity K) to describe Boussinesg's
problem and had assumed that there were four independent
dimensions (energy £, length L, time T, and temperature ©). Thus
the solution for 777, necessarily is an arbitrary function of one
dimensionless combination. To see this explicitly, let us examine the
dimensions of the five physical variables:

(1= L,[8]=8,[y]=LT",[C]=ELT67,
and [K]=EL'T'@7'.

Clearly the combination chosen by Rayleigh, /v(/K, is dimension-
fess. Although other dimensionless combinations can be formed, they
are not independent of the two combinations (WC/K and T/T,)
selected by Rayleigh.

Now suppose, along with Riabouchinsky, we use our knowledge of

the kinetic theory to define temperature “as the mean kinetic energy
of the molecules” so that © is no longer an independent dimension.
This means there are now only three independent dimensions and the
solution will depend on an arbitrary function of two dimensionless
combinations. With © « E, the dimensions of the physical variables
become:

1=L,18)=E,[v]=LT[C)=L3 and [K]}= L~'T"

It is clear that, in addition to Rayleigh’s dimensionless variable, there
is now a new independent combination, CP for example, that is
dimensioniess. To reiterate Rayleigh: “it- would indeed be a paradox
if the further knowledge of the nature of heat . . . put us in a worse
position than before . . . it would be well worthy of discussion.”

Like almost all paradoxes, there is a bogus aspect to the argument.
It is certainly true that the kinetic theory allows one to express an
energy as a temperature. However, this is only useful and appropriate
for situations where the physics is dominated by molecular consider-
ations. For macroscopic situations such as Boussinesq’s problem, the
molecular nature of the system is irrelevant; the microscopic
variables have been replaced by macroscopic averages embodied in
phenomenological properties such as the specific heat and conduc-
tivity. To make Riabouchinsky’s identification of energy with tem-
perature is to introduce irrelevant physics into the problem.

Exploring this further, we recall that such an energy-temperature
identification implicitly involves the introduction of Boltzmann’s
factor k. By its very nature, k& will only play an explicit role in a
physical problem that directly involves the molecular nature of the
system; otherwise it will not enter. Thus one could describe the
system from the molecular viewpoint (so that & is involved) and then
take a macroscopic limit. Taking the limit is equivalent to setting
k = 0; the presence of a finite k indicates that explicit effects due to
the kinetic theory are important.

With this in mind, we can return to Boussinesq’s problem and
derive Riabouchinsky’s result in a somewhat more illuminating
fashion. Let us follow Rayleigh and keep E, L, T, and © as the

Each of these variables, including F itself] is
always expressible in terms of some standard
set of independent units, which can be
chosen to be mass M, length L, and time 7.
These are the hidden scale parameters. Ob-
viously, other combinations could be used.
There could even be other independent
units, such as temperature (but remember
Riabouchinsky!), or more than one inde-
pendent length (say, transverse and long-
itudinal). In this discussion, we shall simply
use the conventional M, L, and T. Any
generalization is straightforward.

In terms of this standard set of units, the
magnitude of each x; is given by
x; =M% [Bi T (15)

The numbers a;, ;, and y; will be recognized
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as “the dimensions” of x;. Now suppose we
change the system of units by some scale
transformation of the form

M—M =xM,

L—L =)L,

and

T—T=xT. (16)
Each variable then responds as follows:
X;— X/ = Z{A)x;, (17

where

Zh) =A% abiad, (18)

and A is shorthand for A, A7, and A Since
F is itself a dimensional physical quantity, it
transforms in an identical fashion under this
scale change:

F—F=ZM\ Fx X3, ....x0, (19
where
ZO) =24 AR AT (20)

Here a, B, and y are the dimensions of F.

There is, however, an alternate but equiva-
lent way to transform from F to F’, namely,
by transforming each of the variables x;
separately. Explicitly we therefore also have
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Rayleigh-Riabouchinsky Paradox

independent dimensions but add & (with dimensions £6~") as a new
physical variable. The solution will now be an arbitrary function of
two independent dimensionless variables: C/K and kCP. When
Riabouchinsky chose to make CP his other dimensionless variable,
he, in effect, chose a system of units where k= 1. But that was a
terrible thing to do here since the physics dictates that &k = 0! Indeed,
if kK = 0 we regain Rayleigh’s original result, that is, we have only one
dimensionless variable. It is somewhat ironic that Rayleigh’s remarks
miss the point: “further knowledge of the nature of heat afforded by
molecular theory” does not put one in a better position for solving
the problem—rather, it leads to a microscopic description of K and
C. The important point pertinent to the problem set up by Rayleigh is
that knowledge of the molecular theory is irrelevant and £ must not
enter.

The lesson here is an important one because it illustrates the role
played by the fundamental constants. Consider Planck’s constant
h = h/2n: it would be completely inappropriate to introduce it into a
problem of classical dynamics. For example, any solution of the
scattering of two billiard balls will depend on macroscopic variables
such as the masses, velocities, friction coefficients, and so on. Since
billiard balls are made of protons, it might be tempting to the purist
to include as a dependent variable the proton-proton total cross
section, which, of course, involves A. This would clearly be totally
inappropriate but is analogous to what Riabouchinsky did in
Boussinesq’s problem.

Obviously, if the scattering is between two microscopic *“‘atomic
billiard balls” then A must be included. In this case it is not only quite
legitimate but often convenient to choose a system of units where
h = 1. However, having done so one cannot directly recover the

classical limit corresponding to A = (0. With A = 1, one is stuck in
quantum mechanics just as, with £ = 1, one is stuck in kinetic theory.

A similar situation obviously occurs in relativity: the velocity of
light ¢ must not occur in the classical Newtonian limit. However, in a
relativistic situation one is quite at liberty to choose units where
¢= 1. Making that choice, though, presumes the physics involves
relativity.

The core of particle physics, relativistic quantum field theory, is a
synthesis of quantum mechanics and relativity. For this reason,
particle physicists find that a system of units in which k. =c=1is
not only convenient but is a manifesto that quantum mechanics and
relativity are the basic physical laws governing their area of physics.
In quantum mechanics, momentum p and wavelength X are related
by the de Broglie relation: p = 2rh/A; similarly, energy E and fre-
quency o are related by Planck’s formula: £ = ho. In relativity we
have the famous Einstein relation: E = mc?. Obviously if we choose
h =c¢ =1, all energies, masses, and momenta have the same units
(for example, electron volts (eV)), and these are the same as inverse
lengths and times. Thus larger energies and momenia inevitably
correspond to shorter times and lengths.

Using this choice of units automatically incorporates the profound
physics of the uncertainty principle: to probe short space-time inter-
vals one needs large energies. A useful number to remember is that
107'3 centimeter, or | fermi (fm), equals the reciprocal of 200 MeV.
We then find that the electron mass (= 1/2 MeV) corresponds to a
length of = 400 fm—its Compton wavelength. Or the 20 TeV
(2 X 107 MeV) typically proposed for a possible future facility
corresponds to a length of 107'8 centimeter. This is the scale distance
that such a machine will probe! ®

F— F'=

HZMx1, Zo(Mxa, - . . ZdMxa) . (21)
Equating these two different ways of effecting
a scale change leads to the identity

HZMx1,ZoMN)x2, - - ZaM)Xn) =

ZA) F(xy,X2, -« Xn) - (22)

As a concrete example, consider the equation
E=mc’. To change scale one can either
transform E directly or transform m and ¢
separately and multiply the results ap-
propriately—obviously the final result must
be the same.

We now want to ensure that the resulting
form of the equation does not depend on A.
This is best accomplished using Euler’s trick

of taking d/dA and then setting A= 1. For
example, if we were to consider changes in
the mass scale, we would use d/dAs and the
chain rule for partial differentiation to arrive
at

$ . 3% oF_ 0z

X5 7, *)

=1

When we set Ay, = 1, differentiation of Egs.
18 and 20 yields

az (24)
CANRD

and x;/ = x;, so that Eq. 23 reduces to

aF aF
alxla—xl'f'(lzXza—xz'f'(l]Xga—x_s‘*‘. ..

JaF
+ a,x, s aF. 295)

Obviously this can be repeated with A,
and Arto obtain a set of three coupled partial
differential equations expressing the funda-
mental scale invariance of physical laws (that
is, the invariance of the physics to the choice
of units) implicit in Fourier’s original work.
These equations can be solved without too
much difficulty; their solution is, in fact, a
speciai case of the solution to the re-
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normalization group equation (given ex-
plicitly as Eq. 35 below). Not too surpris-
ingly, one finds that the solution is precisely
equivalent to the constraints of dimensional
analysis. Thus there is never any explicit
need to use these rather cumbersome equa-
tions: ordinary dimensional analysis takes
care of it for you!

Quantum Field Theory

We have gone through this little mathe-
matical exercise to illustrate the well-known
relationship of dimensional analysis to scale
and form invariance. I now want to discuss
how the formalism must be amended when
applied to quantum field theory and give a
sense of the profound consequences that fol-
low. Using the above chain of reasoning as a
guide, I shall examine the response of a
quantum field theoretic system to a change
in scale and derive a partial differential equa-
tion analogous to Eq. 25. This equation is
known as the renormalization group equa-
tion since its origins lay in the somewhat
arcane area of the renormalization procedure
used to tame the infinities of quantum field
theory. I shall therefore have to digress
momentarily to give a brief résumé of this
subject before returning to the question of
scale change.

Renormalization. Perhaps the most unnerv-
ing characteristic of quantum field theory for
the beginning student (and possibly also for
the wise old men) is that almost all calcula-
tions of its physical consequences naively
lead to infinite answers. These infinities stem
from divergences at high momenta as-
sociated with virtual processes that are
always present in any transition amplitude.
The renormalization scheme, developed by
Richard P. Feynman, Julian S. Schwinger,
Sin-Itiro Tomonaga, and Freeman Dyson,
was invented to make sense out of this for
quantum electrodynamics (QED).

To get a feel for how this works I shall
focus on the photon, which carries the force
associated with the electromagnetic field. At
the classical limit the propagator* for the
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photon represents the wusual static 1/r
Coulomb potential. The corresponding
Fourier transform (that is, the propagator’s
representation in momentum space) in this
limit is 1/¢°, where g is the momentum car-
ried by the photon. Now consider the
“classical” scattering of two charged particles
(represented by the Feynman diagram in Fig,
8 (a)). For this event the exchange of a single
photon gives a transition amplitude propor-
tional to €§/q%, where ¢y is the charge (or
coupling constant) occurring in the La-
grangian. A standard calculation results in
the classical Rutherford formula, which can
be extended relativistically to the spin-1/2
case embodied in the diagram.

A typical quantum-mechanical correction
to the scattering formula is illustrated in Fig.
8 (b). The exchanged photon can, by virtue of
the uncertainty principle, create for a very
short time a virtual electron-positron pair,
which is represented in the diagram by the
loop. We shall use k to denote the momen-
tum carried around the loop by the two
particles.

There are, of course, many such correc-
tions that serve to modify the 1/¢° single-

photon behavior, and this is represented
schematically in part (c). It is convenient to
include all these corrections in a single multi-
plicative factor Dy that represents deviations
from the single-photon term. The “full”
photon propagator including all possible
radiative corrections is therefore Dy/g°. The
reason for doing this is that Dy is a
dimensionless function that gives a measure
of the polarization of the vacuum caused by
the production of virtual particles. (The ori-
gin of the Lamb shift is vacuum polariza-
tion.)

We now come to the central problem:
upon evaluation it is found that contribu-
tions from diagrams like (b) are infinite be-
cause there is no restriction on the magni-
tude of the momentum & flowing in the loop!
Thus, typical calculations lead to integrals of
the form

de_kl ’ (26)
0 k2 + g4

which diverge logarithmically. Several
prescriptions have been invented for making
such integrals finite; they all involve “reg-

*Roughly speaking, the photon propagator can be
thought of as the Green’s function for the elec-
tromagnetic field. In the relativistically covariant
Lorentz gauge, the classical Maxwell’s equations
read

P AK) =j(x),

where A(X) is the vector potential and j(x) is the
current source term derived in QED from the mo-
tion of the electrons. (To keep things simple I am
suppressing all space-time indices, thereby ignoring
spin.) This equation can be solved in the standard
way using a Green’s function:

A(x) = [d*% G(x' —x) j(x'),
with
O G(x) = 8(x) .

Now a transition amplitude is proportional to the
interaction energy, and this is given by

H;= [d*xj(x) Ax) =

[d x [a%x j(x) G(x—x') j(x'),

illustrating how G “mediates” the force between
two currents separated by a space-time interval
(x-x’). It is usually more convenient to work with
Fourier transforms of these quantities (that is, in
momentum space). For example, the momentum
space solution for G is G(q) = I/qz, and this is
usually called the free photon propagator since it
is essentially classical. The corresponding
“classical” transition amplitude in momentum
space is justj(q)(1 /qz)j(q), which is represented
by the Feynman graph in Fig. 8 (a).

In quantum field theory, life gets much more
complicated because of radiative corrections as
discussed in the text and illustrated in (b) and (c)
of Fig. 8. The definition of the propagator is
generally in terms of a correlation function in
which a photon is created at point x out of the
vacuum for a period x-x’ and then returns to the
vacuum at point x’. Symbolically, this is repre-
sented by

G(x-x’) ~ (vac|A(x’) A(x)|vac) .

During propagation, anything allowed by the
uncertainty principle can happen—these are the
radiative corrections that make an exact calcula-
tion of G almost impossible.
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Fig. 8. Feynman diagrams for (a) the classical scattering of two particles of
charge e, (b) a typical correction that must be made to that scattering—here
because of the creation of a virtual electron-positron pair—and (c) a diagram
representing all such possible corrections. The matrix element is proportional for
(a) to e}/q’ and for (c) to D,/q* where D, includes all corrections.

ularizing” the integrals by introducing some
large mass parameter A. A standard tech-
nique is the so-called Pauli-Villars scheme in
which a factor A%/(k*+ A?) is introduced
into the integrand with the understanding
that A is to be taken to infinity at the end of
the calculation (notice that in this limit the
regulating factor approaches one). With this
prescription, the above integral is therefore
replaced by

lim © diA?
A= Jo (K2 +ag?) (K2 + A?)
2
=lIn AZ . (27
aq

The integral can now be evaluated and its
divergence expressed in terms of the (in-
finite) mass parameter A. All the infinities
arising from quantum fluctuations can be
dealt with in a similar fashion with the result
that the following series is generated:

A2
Dige) ~ 1 +add(in % 4. )+
q

242 2
eé[az(ln éz ) + byln A +]+
q g

(28)

In this way the structure of the infinite
divergences in the theory are parameterized
in terms of A, which can serve as a finite
cutoffin the integrals over virtual momenta.*

The remarkable triumph of the re-
normalization program is that, rather than
imposing such an arbitrary cutoff, all these
divergences can be swallowed up by an in-
finite rescaling of the fields and coupling con-

*In this discussion I assumed, for simplicity,
that the original Lagrangian was massless; that
is, it contained no explicit mass parameter. The
addition of such a mass term would only com-
plicate the discussion unnecessarily without giv-
ing any new insights.
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stants. Thus, a finite propagator D, that does
not depend on A, can be derived from Dg by
rescaling if, at the same time, one rescales the
charge similarly. These rescalings take the
form

D=ZpDyand e= Z.¢; . (29)

The crucial property of these scaling fac-
tors is that they are independent of the physi-
cal momenta (such as g) but depend on A in
such a way that when the cutoff is removed,
D and e remain finite. In other words, when
A — =, Zp and Z, must develop infinities of
their own that precisely compensate for the
infinities of Dg and ¢;. The original so-called
bare parameters in the theory calculated
from the Lagrangian (Dy and ep) therefore
have no physical meaning—only the re-
normalized parameters (D and ¢) do.

Now let us apply some ordinary dimen-
sional analysis to these remarks. Because
they are simply scale factors, the Z’s must be
dimensionless. However, the Z’s are func-
tions of A but not of g. But that is very
peculiar: a dimensionless function cannot
depend on a single mass parameter! Thus, in
order to express the Z’s in dimensionless
form, a new finite mass scale p must be
introduced so that one can write
Z = Z(A¥pt ep). An immediate consequence
of renormalization is therefore to induce a
mass scale not manifest in the Lagrangian.
This is extremely interesting because it
provides a possible mechanism for generat-
ing mass even though no mass parameter
appears in the Lagrangian. We therefore
have the exciting possibility of being able to
calculate the masses of al/l the elementary
particles in terms of just one of them. Similar
considerations for the dimensionless D’s
clearly require that they be expressible as
Do= Do(*/A%ep), as in Eq. 28, and
D= D(¢*/u*e). (The dream of particle
theorists is to write down a Lagrangian with
no mass parameter that describes all the
interations in terms of just one coupling con-
stant. The mass spectrum and scattering
amplitudes for all the elementary particles
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would then be calculable in terms of the
value of this single coupling at some given
scale! A wonderful fantasy.)

To recapitulate, the physical finite re-
normalized propagator D is related to its bare
and divergent counterpart Dy (calculated
from the Lagrangian using a cutoff mass) by
an infinite rescaling;

2 2 2

F \_ . u q
Dy 5. )= lim Z,| = Z .
(ﬁze) Avcn ”<A2’e° )D"(AZ’ e")

(30)

Similarly, the physical finite charge eis given
by an infinite rescaling of the bare charge ¢,
that occurs in the Lagrangian

(31

uz
e= I{I_IPOC Zz,(lr2 R 6’0) €p .

Notice that the physical coupling ¢ now de-
pends implicitly on the renormalization
scale parameter p. Thus, in QED, for exam-
ple, it is not strictly sufficient to state that the
fine structure constant o = 1/137; rather,
one must also specify the corresponding
scale. From this point of view there is
nothing magic about the particular number
137 since a change of scale would produce a
different value.

At this stage, some words of consolation to
a possibly bewildered reader are in order. It is
not intended to be obvious how such infinite
rescalings of infinite complex objects lead to
consistent finite results! An obvious question
is what happens with more complicated
processes such as scattering amplitudes and
particle production? These are surely even
more divergent than the relatively simple
photon propagator. How does one know that
a similar rescaling procedure can be carried
through in the general case?

The proof that such a procedure does in-
deed work consistently for any transition
amplitude in the theory was a real tour de
force. A crucial aspect of this proof was the
remarkable discovery that in QED only a
finite number (three) of such rescalings was

necessary to render the theory finite. This is
terribly important because it means that
once we have renormalized a few basic en-
tities, such as ey, all further rescalings of
more complicated quantities are completely
determined. Thus, the theory retains predic-
tive power—in marked contrast to the highly
unsuitable scenario in which each transition
amplitude would require its own infinite
rescaling to render it finite. Such theories,
termed nonrenormalizable, would ap-
parently have no predictive power. High
energy physicists have, by and large, restrict-
ed their attention to renormalizable theories
just because all their consequences can, in
principle, be calculated and predicted in
terms of just a few parameters (such as the
physical charge and some masses).

I should emphasize the phrase “in prin-
ciple” since in practice there are very few
techniques available for actually carrying out
honest calculations. The most prominent of
these is perturbation theory in the guise of
Feynman graphs. Most recently a great deal
of effort, spurred by the work of K. G.
Wilson, has gone into trying to adapt quan-
tum field theory to the computer using lattice
gauge theories.* In spite of this it remains
sadly true that perturbation theory is our
only “global™ calculational technique. Cer-
tainly its success in QED has been nothing
less than phenomenal.

Actually only a very small class of re-
normalizable theories exist and these are
characterized by dimensionless coupling
constants. Within this class are gauge the-
ories like QED and its non-Abelian ex-
tension in which the photon interacts with
itself. All modern particle physics is based
upon such theories. One of the main reasons
for their popularity, besides the fact they are
renormalizable, is that they possess the prop-
erty of being asymptotically free. In such
theories one finds that the renormalization
group constraint, to be discussed shortly,
requires that the large momentum behavior

*In recent years there has been some effort to
come to grips analytically with the
nonperturbative aspects of gauge theories.
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be equivalent to the small coupling limit;
thus for large momenta the renormalized
coupling effectively vanishes thereby allow-
ing the use of perturbation theory to calculate
physical processes.

This idea was of paramount importance in
substantiating the existence of quarks from
deep inelastic electron scattering experi-
ments. In these experiments quarks behaved
as if they were quasi-free even though they
must be bound with very strong forces (since
they are never observed as free particles).
Asymptotic freedom gives a perfect expla-
nation for this: the effective coupling, though
strong at low energies, gets vanishingly small
as ¢* becomes large (or equivalently, as dis-
tance becomes small).

In seeing how this comes about we will be
led back to the question of how the field
theory responds to scale change. We shall
follow the exact same procedure used in the
classical case: first we scale the hidden pa-
rameter (i, in this case) and see how a typical
transition amplitude, such as a propagator,
responds. A partial differential equation,
analogous to Eq. 25, is then derived using

Euler’s trick. This is solved to yield the gen-
eral constraints due to renormalization
analogous to the constraints of dimensional
analysis. I will then show how these con-
straints can be exploited, using asymptotic
freedom as an example.

The Renormalization Group Equation. As
already mentioned, renormalization makes
the bare parameters occurring in the La-
grangian effectively irrelevant; the theory has
been transformed into one that is now speci-
fied by the value of its physical coupling
constants at some mass scale p. In this sense
 plays the role of the hidden scale parameter
M in ordinary dimensional analysis by set-
ting the scale of units by which all quantities
are measured.

This analogy can be made almost exact by
considering a scale change for the arbitrary
parameter p in which-u — A%y, This change
allows us to rewrite Eq. 30 in a form that
expresses the response of D to a scale change:

@ o a
D ()»}12 &(Ap )) =ZMND (L—lz .81 )) .
(32)

(From now on I will use g to denote the
coupling rather than e because e is usually
reserved for the electric charge in QED.)
The scale factor Z(2), which is independ-
ent of ¢? and g, must, unlike the Z’s of Egs.
30 and 31, be finite since it relates two finite
quantities. Notice that all explicit reference
to the bare quantities has now been
eliminated. The structure of this equation is
identical to Eq. 22, the scaling equation de-
rived for the classical case; the crucial dif
ference is that Z(\) no longer has the simple
power law behavior expressed in Eq. 18. In
fact, the general structure of Z(A) and g(u) are
not known in field theories of interest.
Nevertheless we can still learn much by con-
verting this equation to the differential form
analogous to Eq. 25 that expresses scale in-
variance. As before we simply take 9/dA and
set A =1, thereby deriving the so-called re-
normalization group equation:

¢ 25+ B(8) 7 = YE) D. (33)
where

Bo) =1 55 (34)
and

v = B2, (39)

Comparing Eq. 33 with the scaling equation
of classical dimensional analysis (Eq. 25), we
see that the role of the dimension is played by
v. For this reason, and to distinguish it from
ordinary dimensions, ¥ is usually called the
anomalous dimension of D, a phrase orig-
inally coined by Wilson. (We say anomalous
because, in terms of ordinary dimensions
and again by analogy with Eq. 25, D is actu-
ally dimensionless!) It would similarly have
been natural to call B(g)/g the anomalous
dimension of g; however, conventionally,
one simply refers to B(g) as the B-function.
Notice that B(g) characterizes the theory as a
whole (as does g itself since it represents the
coupling) whereas y(g) is a property of the
particular object or field one is examining.

The general solution of the renormaliza-
tion group equation (Eq. 33) is given by

2

R (52 ,g> _ eA(g)f<:Tl; ex<g>) , (36)
where

g
A= deg® er
and

& d
k9= 55 8

The arbitrary function fis, in principle, fixed
by imposing suitable boundary conditions.
(Equation 25 can be viewed as a special and
rather simple case of Eq. 33. If this is done,
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the analogues of y(g) and B(g)/g are con-
stants, resulting in trivial integrals for 4 and
K. One can then straightforwardly use this
general solution (Eq. 36) to verify the claim
that the scaling equation (Eq. 22) is indeed
exactly equivalent to using ordinary dimen-
sional analysis.) The general solution reveals
what is perhaps the most profound conse-
quence of the renormalization group,
namely, that in quantum field theory the
momentum variables and the coupling con-
stant are inextricably linked. The photon
propagator (D/q%), for instance, appears at
first sight to depend separately on the
momentum ¢° and the coupling constant g.
Actually, however, the renormalizability of
the theory constrains it to depend effectively,
as shown in Eq. 36, on only one variable
(@?e"®/u?). This, of course, is exactly what
happens in ordinary dimensional analysis.
For example, recall the turkey cooking prob-
lem. The temperature distribution at first
sight depended on several different variables:
however, scale invariance, in the guise of
dimensional analysis, quickly showed that
there was in fact only a single relevant
variable.

The observation that renormalization in-
troduces an arbitrary mass scale upon which
no physical consequences must depend was
first made in 1953 by E. Stueckelberg and A.
Peterman. Shortly thereafter Murray Gell-
Mann and F. Low attempted to exploit this
idea to understand the high-energy structure
of QED and, in so doing, exposed the in-
timate connection between g and ¢>. Not
much use was made of these general ideas
until the pioneering work of Wilson in the
late 1960s. I shall not review here his seminal
work on phase transitions but simply remark
that the scaling constraint implicit in the
renormalization group can be applied to cor-
relation functions to learn about critical ex-
ponents.* Instead I shall concentrate on the

*Since the photon propagator is defined as the
correlation function of two electromagnetic
fields in the vacuum it is not difficult to imagine
that the formalism discussed here can be directly
applied to the correlation functions of statistical
physics.
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particle physics successes, including
Wilson’s, that led to the discovery that non-
Abelian gauge theories were asymptotically
free. Although the foci of particle and con-
densed matter physics are quite different,
they become unified in a spectacular way
through the language of field theory and the
renormalization group. The analogy with di-
mensional analysis is a good one, for, as we
saw in the first part of this article, its con-
straints can be applied to completely diverse
problems to give powerful and insightful re-
sults. In a similar fashion, the renormaliza-
tion group can be applied to any problem
that can be expressed as a field theory (such
as particle physics or statistical physics).

Often in physics, progress is made by ex-
amining the system in some asymptotic re-
gime where the underlying dynamics
simplifies sufficiently for the general struc-
ture to become transparent. With luck,
having understood the system in some ex-
treme region, one can work backwards into
the murky regions of the problem to under-
stand its more complex structures. This is
essentially the philosophy behind bigger and
bigger accelerators: keep pushing to higher
energies in the hope that the problem will
crack, revealing itself in all its beauty and
simplicity. "Tis indeed a faithful quest for the
holy grail. As I shall now demonstrate, the
paradigm of looking first for simplicity in

asymptotic regimes is strongly supported by
the methodology of the renormalization
group.

In essence, we use the same modeling-
theory scaling technique used by ship de-
signers. Going back to Eq. 36, one can see
immediately that the high-energy or short-
distance limit (¢° — « with g fixed) is iden-
tical to keeping ¢ fixed while taking K — oo.
However, from its definition (Eq. 38), K
diverges whenever B(g) has a zero. Similarly,
the low-energy or long-distance limit (¢> — 0
while g is fixed) is equivalent to K— —o,
which also occurs when § — 0. Thus know!-
edge of the zeros of B, the so-called fixed
points of the equation, determines the high-
and low-energy behaviors of the theory.

If one assumes that for small coupling
quantum field theory is governed by or-
dinary perturbation theory, then the B-func-
tion has a zero at zero coupling (g — 0). In
this limit one typically finds P(g) =~ —bg’
where b is a calculable coefficient. Of course,
B might have other zeroes, but, in general,
this is unknown. In any case, for small g we
find (using Eq. 38) that K(g) ~ (2bg)”",
which diverges to either += or —« depending
on the sign of b. In QED, the case originally
studied by Gell-Mann and Low, <0 so that
K — —, which is equivalent to the low-
energy limit. One can think of this as an
explanation of why perturbation theory
works so well in the low-energy regime of
QED: the smaller the energy, the smaller the
effective coupling constant.

Quantum Chromodynamics. It appears that
some non-Abelian gauge theories and, in
particular, QCD (see “Particle Physics and
the Standard Model™) possess the unique
property of having a positive b. This
marvelous observation was first made by H.
D. Politzer and independently by D. J. Gross
and F. A. Wilczek in 1973 and was crucial in
understanding the behavior of quarks in the
famous deep inelastic scattering experiments
at the Stanford Linear Accelerator Center. As
a result, it promoted QCD to the star posi-
tion of being a member of ‘“the standard}
model.” With b > 0 the high-energy limit is‘
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related to perturbation theory and is there-
fore calculable and understandable. I shall
now give an explicit example of how this
comes about.

First we note that no boundary conditions
have yet been imposed on the general solu-
tion (Eq. 36). The one boundary condition
that must be imposed is the known free field
theory limit (g = 0). For the photon in QED,
or the gluon in QCD, the propagator G
(=D/g%) in this limit is just 1/¢%. Thus
D(¢*/p?,0)= 1. Imposing this on Eq. 36 gives

2
D(}%Z,O):;i_r%e“‘g’f(é @) )
=1. (39)

Now when g — 0, y(g) = —ag? where ais a
calculable coefficient. Combining this with
the fact that B(g) = —bg’ leads, by way of Eq.
37, 10 A(g) = (a/b) in g. Since K(g) =
(2bg»™!, the boundary condition (Eq. 39)
gives

: 22 128D Y = o—a/b
(l,!-% f < ! e g, (40)

Defining the dimensionless variable in the
function fas

q2
X = (P )en/(zng)’ (41)

it can be shown that with b > 0 Eq. 40 is
equivalent to

}i_r}l fAx)=(2bIn x)¥% 42)

An important point here is that the x — o
limit can be reached either by letting g— O or
by taking ¢° — . Since the g — 0 limit is
calculable, so is the g — o limit. The free
field (g — 0) boundary condition therefore

determines the large x behavior of f{x), and,
once again, the “modeling technique” can be
used—here to determine the large ¢
behavior of the propagator G.

In fact, combining Eq. 36 with Eq. 42 leads
to the conclusion that

) q2 q2 af2b
lmD(L—lz,g)=e‘(g’(2bln}?) .

—e0

(43)

This is the generic structure that finally
emerges: the high-energy or large-¢* behavior
of the propagator G = D/g’ is given by free
field theory (1/¢°) modulated by calculable
powers of logarithms. The wonderful miracle
that has happened is that all the powers of
In(A%/¢?) originally generated from the
divergences in the “bare” theory (as il-
lustrated by the series in Eq. 28) have been
summed by the renormalization group to
give the simple expression of Eq. 43. The
amazing thing about this “exact” result is
that is is far easier to calculate than having to
sum an infinite number of individual terms
in a series. Not only does the methodology
do the summing, but, more important, it
justifies it!

I have already mentioned that asymptotic
freedom (that is, the equivalence of van-
ishingly small coupling with increasing
momentum) provides a natural explanation
of the apparent paradox that quarks could
appear free in high-energy experiments even
though they could not be isolated in the
laboratory. Furthermore, with lepton probes,
where the theoretical analysis is least am-
biguous, the predicted logarithmic modula-
tion of free-field theory expressed in Eq. 43
has, in fact, been brilliantly verified. Indeed,
this was the main reason that QCD was
accepted as the standard model for the strong
interactions.

There is, however, an even more profound
consequence of the application of the re-
normalization group to the standard model
that leads to interesting speculations con-

cerning unified field theories. As discussed in
“Particle Physics and the Standard Model,”
QED and the weak interactions are partially
unified into the electroweak theory. Both of
these have a negative b and so are not
asymptotically free; their effective couplings
grow with energy rather than decrease. By the
same token, the QCD coupling should grow
as the energy decreases, ultimately leading to
the confinement of quarks. Thus as energy
increases, the two small electroweak cou-
plings grow and the relatively large QCD
coupling decreases. In 1974, Georgi, Quinn,
and Weinberg made the remarkable observa-
tion that all three couplings eventually be-
came equal at an energy scale of about 10'*
GeV! The reason that this energy turns out to
be so large is simply due to the very slow
logarithmic variation of the couplings. This
is a very suggestive result because it is ex-
tremely tempting to conjecture that beyond
10'* GeV (that is, at distances below 1077
cm) all three interactions become unified
and are governed by the same single cou-
pling. Thus, the strong, weak, and elec-
tromagnetic forces, which at low energies
appear quite disparate, may actually be
manifestations of the same field theory. The
search for such a unified field theory (and its
possible extension to gravity) is certainly one
of the central themes of present-day particle
physics. It has proven to be a very exciting
but frustrating quest that has sparked the
imagination of many physicists. Such ideas
are, of course, the legacy of Einstein, who
devoted the last twenty years of his life to the
search for a unified field theory. May his
dreams become reality! On this note of fan-
tasy and hope we end our brief discourse
about the role of scale and dimension in
understanding the world—or even the uni-
verse—around us. The seemingly innocuous
investigations into the size and scale of
animals, ships, and buildings that started
with Galileo have led us, via some minor
diversions, into baked turkey, incubating
eggs, old bones, and the obscure infinities of
Feynman diagrams to the ultimate question
of unified field theories. Indeed, similitudes
have been used and visions multiplied. B
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l ] ntil the 1930s all natural phenomena were
presumed to have their origin in just two
basic forces—gravitation and elec-

tromagnetism. Both were described by classical
fields that permeated all space. These fields ex-
tended out to infinity from well-defined sources,
mass in the one case and electric charge in the
other. Their benign rule over the physical universe
seemed securely established.

As atomic and subatomic phenomena were ex-
plored, it became apparent that two completely
novel forces had to be added to the list; they were
dubbed the weak and the strong. The strong force
was necessary in order to understand how the
nucleus is held together: protons bound together in
a tight nuclear ball (107'? centimeter across) must
be subject to a force much stronger than elec-
tromagentism to prevent their flying apart. The

weak force was invoked to understand the trans-
mutation of a neutron in the nucleus into a proton
during the particularly slow form of radioactive
decay known as beta decay.

Since neither the weak force nor the strong force
is directly observed in the macroscopic world,
both must be very short-range relative to the more
familiar gravitational and electromagnetic forces.
Furthermore, the relative strengths of the forces
associated with all four interactions are quite dif-
ferent, as can be seen in Table 1. It is therefore not
too surprising that for a very long period these
interactions were thought to be quite separate. In
spite of this, there has always been a lingering
suspicion (and hope) that in some miraculous
fashion all four were simply manifestations of one
source or principle and could therefore be de-
scribed by a single unified field theory.

The color force among quarks and gluons is described by a generalization of the Lagrangian £ of quantum
electrodynamics shown above. The large interaction vertex dominating these pages is a common feature of the
strong, the weak, and the electromagnetic forces. A feature unique to the strong force, the self-interaction of
colored gluons, is suggested by the spiral in the background.




Table 1

The four basic forces. Differences in strengths among the
basic interactions are observed by comparing characteristic
cross sections and particle lifetimes. (Cross sections are
often expressed in barns because the cross-sectional areas

107 square centimeter.) The stronger the force, the larger
is. the effective: scattering area, or cross section, and the
shorter the lifetime of the particle state. At 1 GeV strong
processes take place 10° times faster than electromagnetic

of nuclei are of this order of magnitude; one barn equals

processes and 10° times faster than weak processes.
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Fig. 1. The main features of the standard model. The strong
Jorce and the electroweak force are each induced by a local
symmetry group, SU(3) and SU(2) X U(1), respectively.
These two symmetries are entirely independent of each other.
SU(3) symmetry (called the color symmetry) is exact and
therefore predicts conservation of color charge. The SU(2) X
U(1) symmetry of the electroweak theory is an exact sym-

The spectacular progress in particle phys-
ics over the past ten years or so has renewed
this dream; many physicists today believe
that we are on the verge of uncovering the
structure of this unified theory. The theoreti-
cal description of the strong, weak, and elec-
tromagnetic interactions is now considered
well established, and, amazingly enough, the
theory shows these forces to be quite similar
despite their experimental differences. The
weak and strong forces have sources
analogous to, but more complicated than,
electric charge, and, like the electromagnetic
force, both can be described by a special type
of field theory called a local gauge theory.
This formulation has been so successful at
explaining all known phenomenology up to
energies of 100 GeV (1 GeV = 10° electron
volts) that it has been coined “‘the standard

model” and serves as the point of departure
for discussing a grand unification of all
forces, including that of gravitation.

The elements of the standard model are
summarized in Fig. 1. In this description the
basic constituents of matter are quarks and
leptons, and these constituents interact with
each other through the exchange of gauge

analogue of force fields. These so-called local
gauge interactions are inscribed in the lan-
guage of Lagrangian quantum field theory,
whose rich formalism contains mysteries
that escape even its most faithful practi-
tioners. Here we will introduce the central
themes and concepts that have led to the
standard model, emphasizing how its for-
malism enables
phenomenology of the strong, weak, and

metry of the Lagrangian of the theory but not of the solu-
tions to the theory. The standard model ascribes this sym-
metry breaking to the Higgs particles, particles that create a
nonzero weak charge in the vacuum (the lowest energy state
of the system). The only conserved quantity that remains
after the symmetry breaking is electric charge.

For

electromagnetic interactions as different
manifestations of a single symmetry prin-
ciple, the principle of local symmetry. As we
shall see, the standard model has many
arbitrary parameters and leaves unanswered
a number of important questions. It can
hardly be regarded as a thing of great
beauty—unless one keeps in mind that it
particles (vector bosons), the modern embodies a single unifying principle and
therefore seems to point the way toward a
grander unification.

those readers who are more
mathematically inclined, the arguments here
are complemented by a series of lecture notes
immediately following the main text and
entitled “From Simple Field Theories to the
Standard Model.” The lecture notes in-

us to describe all troduce Lagrangian formalism and stress the

symmetry principles underlying construc-
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tion of the standard model. The main
emphasis is on the classical limit of the
model, but indications of its quantum gen-
eralizations are also included.

Unification and Extension

Two central themes of physics that have
led to the present synthesis are “unification”
and “extension.” By “unification” we mean
the coherent description of phenomena that
are at first sight totally unrelated. This takes
the form of a mathematical description with
specific rules of application. A theory must
not only describe the known phenomena but
also make predictions of new ones. Almost
all theories are incomplete in that they
provide a description of phenomena only
within a specific range of parameters. Typi-
cally, a theory changes as it is extended to
explain phenomena over a larger range of
parameters, and sometimes it even
simplifies. Hence, the second theme is called
extension—and refers in particular to the
extension of theories to new length or energy
scales. It is usually extension and the result-
ing simplification that enable unification.

Perhaps the best-known example of ex-
tension and unification is Newton’s theory of
gravity (1666), which unifies the description
of ordinary-sized objects falling to earth with
that of the planets revolving around the sun.
It describes phenomena over distance scales
ranging from a few centimeters up to
10%% centimeters (galactic scales). Newton’s
theory is superceded by Einstein’s theory of
relativity only when one tries to describe

phenomena at extremely high densities

‘and/or velocities or relate events over cos-
mological distance and time scales.

The other outstanding example of unifica-
tion in classical physics is Maxwell’s theory
of electrodynamics, which unifies electricity
with magnetism. Coulomb (1785) had estab-
lished the famous inverse square law for the
force between electrically charged bodies,
and Biot and Savart (1820) and Ampére
(1820-1825) had established the law relating
the magnetic field B to the electric current as
well as the law for the force between two
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electric currents. Thus it was known that
static charges give rise to an electric field
E and that moving charges give rise to a
magnetic field B. Then in 1831 Faraday dis-
covered that the field itself has a life of its
own, independent of the sources. A time-
dependent magnetic field induces an electric
field. This was the first clear hint that electric
and magnetic phenomena were manifesta-
tions of the same force field.

Until the time of Maxwell, the basic laws
of electricity and magnetism were expressed
in a variety of different mathematical forms,
all of which left the central role of the fields
obscure. One of Maxwell’s great achieve-
ments was to rewrite these laws in a single
formalism using the fields E and B as the
fundamental physical entities, whose sources
are the charge density p and the current
density J, respectively. In this formalism the
laws of electricity and magnetism are ex-
pressed as differential equations that mani-
fest a clear interrelationship between the two
fields. Nowadays they are usually written in
standard vector notation as follows.

Coulomb’s law: V - E = 4np/ey;

Ampére’s law: V X B = 4nugd;

Faraday’s law: VXE+dB/dt=0;

and the absence of
magnetic monopoles: V:-B=0.

The parameters gy and yg are determined by
measuring Coulomb’s force between two
static charges and Ampére’s force between
two current-carrying wires, respectively.

Although these equations clearly “unite”
E with B, they are incomplete. In 1865 Max-
well realized that the above equations were
not consistent with the conservation of elec-
tric charge, which requires that

V-J+3dp/ot=0.

This inconsistency can be seen from
Ampére’s law, which in its primitive form
requires that

V.J=(4mue) "'V - (VXB) =0.

Maxwell obtained a consistent solution by
amending Ampére’s law to read

VXB=4np0J+eouog—:§.

With this new equation, Maxwell showed |
that both E and B satisfy the wave equation.
For example,

Vi—g & E=0
0o PY: .

This fact led him to propose the elec-
tromagnetic theory of light. Thus, from Max-
well’s unification of electric and magnetic
phenomena emerged the concept of elec-
tromagnetic waves. Moreover, the speed ¢ of
the electromagnetic waves, or light, is given
by (ggug)” 2 and is thus determined uniquely
in terms of purely static electric and magne-
tic measurements alone!

It is worth emphasizing that apart from
the crucial change in Ampére’s law, Max-
well’s equations were well known to natural
philosophers before the advent of Maxwell!
The unification, however, became manifest
only through his masterstroke of expressing
them in terms of the “right” set of variables,
namely, the fields E and B.

Extension to Small Distance
Scales

Maxwell’s unification provides an ac-
curate description of large-scale elec-
tromagnetic phenomena such as radio
waves, current flow, and electromagnets.
This theory can also account for the effects of
a medium, provided macroscopic concepts
such as conductivity and permeability are
introduced. However, if we try to extend it to
very short distance scales, we run into
trouble; the granularity, or quantum nature,
of matter and of the field itself becomes
important, and Maxwell’s theory must be
altered.

Determining the physics appropriate to
each length scale is a crucial issue and has
been known to cause confusion (see “Funda-
mental Constants and the Rayleigh-
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Fig. 2. The wavelength of the probe must be smaller than the scale of the structure
one wants to resolve. Viruses, which are approximately 10~° centimeter in extent,
cannot be resolved with visible light, the average wavelength of which is 5 X 107
centimeter. However, electrons with momentum p of about 20 eV /c have de Broglie
wavelengths short enough to resolve them.

Riabouchinsky Paradox”). For example, the
structure of the nucleus is completely irrele-
vant when dealing with macroscopic dis-
tances of, say, 1 centimeter, so it would be
absurd to try to describe the conductivity of
iron over this distance in terms of its quark
and lepton structure. On the other hand, it
would be equally absurd to extrapolate
Ohm’s law to distance intervals of 107"
centimeter to determine the flow of electric
current. Relevant physics changes with scale!

The thrust of particle physics has been to
study the behavior of matter at shorter and
shorter distance scales in hopes of under-
standing nature at its most fundamental
level. As we probe shorter distance scales, we
encounter two types of changes in the phys-

ics. First there is the fundamental change
resulting from having to use quantum me-
chanics and special relativity to describe
phenomena at very short distances. Accord-
ing to quantum mechanics, particles have
both wave and particle properties. Electrons
can produce interference patterns as waves
and can deposit all their energy at a point as a
particle. The wavelength A associated with
the particle of momentum p is given by the
de Broglie relation

-
p

where h is Planck’s constant (h/2n = h =
1.0546 X 10~?" erg - second). This relation is

the basis of the often-stated fact that resolv-
ing smaller distances requires particles of
greater momentum or energy. Notice, in-
cidentally, that for sufficiently short wave-
lengths, one is forced to incorporate special
relativity since the corresponding particle
momentum becomes so large that Newto-
nian mechanics fails.

The marriage of quantum mechanics and
special relativity gave birth to quantum field
theory, the mathematical and physical lan-
guage used to construct theories of the
elementary particles. Below we will give a
brief review of its salient features. Here we
simply want to remind the reader that quan-
tum field theory automatically incorporates
quantum ideas such as Heisenberg’s uncer-
tainty principle and the dual wave-particle
properties of all of matter, as well as the
equivalence of mass and energy.

Since the wavelength of our probe de-
termines the size of the object that can be
studied (Fig. 2), we need extremely short
wavelength (high energy) probes to investi-
gate particle phenomena. To gain some
perspective, consider the fact that with vis-
ible light we can see without aid objects as
small as an amoeba (about 1072 centimeter)
and with an optical microscope we can open
up the world of bacteria at about 10™* cen-
timeter. This is the limiting scale of light
probes because wavelengths in the visible
spectrum are on the order of 5 X 107> cen-
timeter.

To resolve even smaller objects we can
exploit the wave-like aspects of energetic
particles as is done in an electron micro-
scope. For example, with “high-energy” elec-
trons (E = 20 eV) we can view the world of
viruses at a length scale of about 1073 cen-
timeter. With even higher energy electrons
we can see individual molecules (about 10™7
centimeter) and atoms (1078 centimeter). To
probe down to nuclear (10712 centimeter)
and subnuclear scales, we need the particles
available from high-energy accelerators. To-
day’s highest energy accelerators produce
100-GeV particles, which probe distance
scales as small as 107'® centimeter.

This brings us to the second type of change
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in appropriate physics with change in scale,
namely, changes in the forces themselves.
Down to distances of approximately 107!2
centimeter, electromagnetism is the domi-
nant force among the elementary particles.
However, at this distance the strong force,
heretofore absent, suddenly comes into play
and completely dominates the interparticle
dynamics. The weak force, on the other
hand, is present at all scales but only as a
small effect. At the shortest distances being
probed by present-day accelerators, the weak
and electromagnetic forces become com-
parable in strength but remain several orders
of magnitude weaker than the strong force. It
is at this scale however, that the fundamental
similarity of all three forces begins to emerge.
Thus, as the scale changes, not only does
each force itself change, but its relationship
to the other forces undergoes a remarkable
evolution. In our modern way of thinking,
which has come from an understanding of
the renormalization, or scaling, properties of
quantum field theory, these changes in phys-
ics are in some ways analogous to the
paradigm of phase transitions. To a young
and naive child, ice, water, and steam appear
to be quite different entities, yet rudimentary
observations quickly teach that they are dif-
ferent manifestations of the same stuff, each
associated with a different temperature scale.
The modern lesson from renormalization
group analysis, as discussed in “Scale and
Dimension—From Animals to Quarks,” is
that the physics of the weak, electromagnetic,
and strong forces may well represent dif-
ferent aspects of the same unified interac-
tion. This is the philosophy behind grand
unified theories of all the interactions.

Quantum Electrodynamics and
Field Theory

Let us now return to the subject of elec-
tromagnetism at small distances and de-
scribe quantum electrodynamics (QED), the
relativistic quantum field theory, developed
in the 1930s and 1940s, that extends Max-
well’s theory to atomic scales. We emphasize
that the standard model is a generalization of
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this first and most successful quantum field
theory.

In quantum field theory every particle has
associated with it a mathematical operator,
called a quantum field, that carries the par-
ticle’s characteristic quantum numbers.
Probably the most familiar quantum number
is spin, which corresponds to an intrinsic
angular momentum. In classical mechanics
angular momentum is a continuous variable,
whereas in quantum mechanics it is restrict-
ed to multiples of 2 when measured in units
of h. Particles with Y2-integral spin (1/2, 3/2,
5/2, ...) are called fermions; particles with
integral spin (0, 1, 2, 3, ... ) are called bosons.
Since no two identical fermions can occupy
the same position at the same time (the

famous Pauli exclusion principle), a collec-
tion of identical fermions must necessarily
take up some space. This special property of]
fermions makes it natural to associate them
with matter. Bosons, on the other hand, can
crowd together at a point in space-time to
form a classical field and are naturally re-
garded as the mediators of forces.

In the quantized version of Maxwell’s the-
ory, the electromagnetic field (usually in the|
guise of the vector potential A,) is a boson
field that carries the quantum numbers of the
photon, namely, mass m =0, spins=1, an
electric charge Q = 0. This quantized field, b
the very nature of the mathematics, auto
matically manifests dual wave-particl
properties. Electrically charged particles
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ig. 3. (a) The force between two electrons is described classically by Coulomb’s
aw. Each electron creates a force field (shown as lines emanating from the charge
(e) that is felt by the other electron. The potential energy V is the energy needed to
ring the two electrons to within a distance r of each other. (b) In quantum field
heory two electrons feel each other’s presence by exchanging virtual photons, or
virtual particles of light. Photons are the quanta of the electromagnetic field. The
eynman diagram above represents the (lowest order, see Fig. 5) interaction
etween two electrons (straight lines) through the exchange of a virtual photon
wavy line).

such as electrons and positrons, are also rep-
resented by fields, and, as in the classical
theory, they interact with each other through
the electromagnetic field. In QED, however,
the interaction takes place via an exchange of
photons. Two electrons “feel” each other’s
presence by passing photons back and forth
between them. Figure 3 pictures the interac-
tion with a “Feynman diagram”: the straight
lines represent charged particles and the
wavy line represents a photon. (In QED such
diagrams correspond to terms in a
perturbative expansion for the scattering be-
tween charged particles (see Fig. 3).
Similarly, most Feynman diagrams in this
issue represent lowest order contributions to
the particle reactions shown.)

These exchanged photons are rather
special. A real photon, say in the light by
which you see, must be massless since only a
massless particle can move at the speed of
light. On the other hand, consider the left-
hand vertex of Fig. 3, where a photon is
emitted by an electron; it is not difficult to
convince oneself that if the photon is mass-
less, energy and momentum are not con-
served! This is no sin in quantum mechanics,
however, as Heisenberg’s uncertainty prin-
ciple permits such violations provided they
occur over sufficiently small space-time in-
tervals. Such is the case here: the violating
photon is absorbed at the right-hand vertex
by another electron in such a way that, over-
all, energy and momentum are conserved.
The exchanged photon is “alive” only for a
period concomitant with the constraints of
the uncertainty principle. Such photons are
referred to as virtual photons to distinguish
them from real ones, which can, of course,
live forever.

The uncertainty principle permits all sorts
of virtual processes that momentarily violate
energy-momentum conservation. As il-
lustrated in Fig. 4, a virtual photon being
exchanged between two electrons can, for a
very short time, turn into a virtual electron-
positron pair. This conversion of energy into
mass is allowed by the famous equation of
special relativity, £ = mct. In a similar
fashion almost anything that can happen wil/
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happen, given a sufficiently small space-time
interval. It is the countless multitude of such
virtual processes that makes quantum field
theory so rich and so difficult.

Given the immense complexity of the the-
ory, one wonders how any reliable calcula-
tion can ever be made. The saving grace of
quantum electrodynamics, which has made
its predictions the most accurate in all of
physics, is the smallness of the coupling be-
tween the electrons and the photons. The
coupling strength at each vertex where an
electron spews out a virtual photon is just the
electronic charge e, and, since the virtual
photon must be absorbed by some other
electron, which also has charge e, the
probability for this virtual process is of mag-
nitude e2 The corresponding dimensionless
parameter that occurs naturally in this theory
is denoted by a and defined as e%/4nh c. It is
approximately equal to 1/137. The
probabilities of more complicated virtual
processes involving many virtual particles
are proportional to higher powers of a and
are therefore very much smaller relative to
the probabilities for simpler ones. Put
slightly differently, the smallness of a implies
that perturbation theory is applicable, and
we can control the level of accuracy of our
calculations by including higher and higher
order virtual processes (Fig. 5). In fact, quan-
tum electrodynamic calculations of certain
atomic and electronic properties agree with
experiment to within one part in a billion.

As we will elaborate on below, the quan-
tum field theories of the electroweak and the
strong interactions that compose the stan-
dard model bear many resemblances to
quantum electrodynamics. Not too surpris-
ingly, the coupling strength of the weak inter-
action is also small (and in fact remains small
at all energy or distance scales), so perturba-
tion theory is always valid. However, the
analogue of o for the strong interaction is not
always small, and in many calculations
perturbation theory is inadequate. Only at
the high energies above 1 GeV, where the
theory is said to be asymptotically free, is the
analogue of a so small that perturbation the-
ory is valid. At low and moderate energies
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Fig. 4. A virtual photon being exchanged between two electrons can, for a very short
time, turn into a virtual electron-positron (e*-e~) pair. This virtual process is one
of many that contribute to the electromagnetic interaction between electrically

charged particles (see Fig. 5).

(for example, those that determine the
properties of protons and neutrons) the
strong-interaction coupling strength is large,
and analytic techniques beyond perturbation
theory are necessary. So far such techniques
have not been very successful, and one has
had to resort to the nasty business of numeri-
cal simulations!

As discussed at the end of the previous
section, these changes in coupling strengths
with changes in scale are the origin of the
changes in the forces that might lead to a
unified theory. For an example see Fig. 3 in
“Toward a Unified Theory.”

Symmetries

One cannot discuss the standard model
without introducing the concept of sym-
metry. It has played a central role in classify-
ing the known particle states (the ground
states of 200 or so particles plus excited
states) and in predicting new ones. Just as the
chemical elements fall into groups in the
periodic table, the particles fall into multi-
plets characterized by similar quantum
numbers. However, the use of symmetry in
particle physics goes well beyond mere

classification. In the construction of the stan-
dard model, the special kind of symmetry
known as local symmetry has become the
guiding dynamical principle; its aesthetic in-
fluence in the search for unification is rem-
iniscent of the quest for beauty among the
ancient Greeks. Before we can discuss this
dynamical principle, we must first review the
general concept of symmetry in particle
physics.

In addition to electric charge and mass,
particles are characterized by other quantum
numbers such as spin, isospin, strangeness,
color, and so forth. These quantum numbers
reflect the symmetries of physical laws and
are used as a basis for classification and,
ultimately, unification.

Although quantum numbers such as spin|
and isospin are typically the distinguishin,
features of a particle, it is probably less well
known that the mass of a particle is some
times its only distinguishing feature. For ex
ample, a muon (u) is distinguished from a
electron (e) only because its mass is 20
times greater that that of the electron. In
deed, when the muon was discovered 1
1938, Rabi was reputed to have made th
remark, “Who ordered thar?”’ And the ta
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Fig. 5. As shown above, the basic inter-
action vertex of quantum elec-
trodynamics is an electron current J*
interacting with the electromagnetic
field A,. Because the coupling strength
o is small, the amplitude for processes
involving such interactions can be ap-
proximated by a perturbation ex-
pansion on a free field theory. The
terms in such an expansion, shown at
left for electron scattering, are propor-
tional to various powers of a. The larg-
est contribution to the electron-scatter-
ing amplitude is proportional to o and
is represented by a Feynmann diagram
in which the interaction vertex appears
twice. Successively smaller contribu-
tions arise from terms proportional to
o with four interaction vertices, from
terms proportional to o with six inter-
action vertices, and so on.

(1), discovered in 1973, is 3500 times heavier
than an electron yet again identical to the
electron in other respects. One of the great
unsolved mysteries of particle physics is the
origin of this apparent hierarchy of mass
among these leptons. (A lepton is a funda-
mental fermion that has no strong interac-
tions.) Are there even more such particles? Is
there a reason why the mass hierarchy among
the leptons is paralleled (as we will describe
below) by a similar hierarchy among the
quarks? It is believed that when we under-
stand the origin of fermion masses, we will
also understand the origin of CP violation in
nature (see box). These questions are fre-
quently called the family problem and are
discussed in the article by Goldman and
Nieto.

Groups and Group Multiplets. Whether or
not the similarity among e, y, and 1t reflects a
fundamental symmetry of nature is not
known. However, we will present several
possibilities for this family symmetry to in-
troduce the language of groups and the
significance of internal symmetries.

Consider a world in which the three lep-
tons have the same mass. In this world atoms
with muons or taus replacing electrons
would be indistinguishable: they would have
identical electromagnetic absorption or
emission bands and would form identical
elements. We would say that this world is
invariant under the interchange of electrons,
muons, and taus, and we would call this
invariance a symmetry of nature. In the real
world these particles don’t have the same
mass; therefore our hypothetical symmetry,
if it exists, is broken and we can distinguish a
muonic atom from, say, its electronic
counterpart.

We can describe our hypothetical in-
variance or family symmetry among the
three leptons by a set of symmetry operations
that form a mathematical construct called a
group. One property of a group is that any
two symmetry operations performed in suc-
cession also corresponds to a symmetry
operation in that group. For example, replac-
ing an electron with a muon, and then replac-
ing a muon with a tau can be defined as two
discrete symmetry operations that when
performed in succession are equivalent to
the discrete symmetry operation of replacing
an electron with a tau. Another group prop-
erty is that every operation must have an
inverse. The inverse of replacing an electron
with a muon is replacing a muon with an
electron. This set of discrete operations on
e, u, and 1 forms the discrete six-element
group 3 (with ©t standing for permutation).
In this language e, ¢, and 1 are called a
multiplet or representation of w3 and are said
to transform as a triplet under n3.

Another possibility is that the particles e,
., and t transform as a triplet under a group
of continuous symmetry operations. Con-
sider Fig. 6, where ¢, i1, and 1 are represented
as three orthogonal vectors in an abstract
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three-dimensional space. The set of continu-
ous rotations of the three vectors about three
independent axes composes the group
known as the three-dimensional rotation
group and denoted by SO(3). As shown in
Fig. 6, SO(3) has three independent trans-
formations, which are represented by or-
thogonal 3 X 3 matrices. (Note that 3 is a
subset of SO(3).)

Suppose that SO(3) were an unbroken
family symmetry of nature and e, p, and t
transformed as a triplet under this sym-
metry. How would it be revealed experimen-
tally? The SO(3) symmetry would add an
extra degree of freedom to the states that
could be formed by e, u, and 1. For example,
the spatially symmetric ground state of
helium, which ordinarily must be antisym-
metric under the interchange of the two elec-
tron spins, could now be antisymmetric
under the interchange of either the spin or
the family quantum number of the two lep-
tons. In particular, the ground state would
have three different antisymmetric con-
figurations and the threefold degeneracy
might be split by spin-spin interactions
among the leptons and by any SO(3) sym-
metric interaction. Thus the ground state of
known helium would probably be replaced
by sets of degenerate levels with small hyper-
fine energy splittings.

In particle physics we are always interested
in the largest group of operations that leaves
all properties of a system unchanged. Since e,
i, and t are described by complex fields, the
largest group of operations that could act on
this triplet is U(3) (the group of all unitary 3
X 3 matrices U satisfying UTU = 1). Another
possibility is SU(3), a subgroup of U(3) satis-
fying the additional constraint that det U= 1.

This list of symmetries that may be
reflected in the similarity of e, u, and 1 is not
exhaustive. We could invoke a group of sym-
metry operations that acts on any subset of
the three particles, such as SU(2) (the group
of 2 X 2 unitary matrices with det U = 1)
acting, say, on e and p as a doublet and on t
as a singlet. Any one of these possibilities
may be realized in nature, and each possibil-
ity has different experimentally observable
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Fig. 6. (a) The three leptons e, |, and 1 are represented as three orthogonal vectors
in an abstract three-dimensional space. (b) The set of rotations about the three
orthogonal axes defines SO(3), the three-dimensional rotation group. SO(3) has
three charges (or generators) associated with the infinitesimal transformations
about the three independent axes. These generators have the same Lie algebra as the
generators of the group SU(2), as discussed in Lecture Note 4 following this article.
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consequences. However, the known dif-
ferences in the masses of ¢, u, and t imply
that any symmetry used to describe the
similarity among them is a broken sym-
metry. Still, a broken symmetry will retain
traces of its consequences (if the symmetry is

broken by a small amount) and thus also
provides useful predictions.

Our hypothetical broken symmetry
among e, 1, and 71 is but one example of an
approximate internal global symmetry. An-
other is the symmetry between, say, the neu-

tron and the proton in strong interactions,
which is described by the group known as
strong-isospin  SU(2). The neutron and
proton transform as a doublet under this
symmetry and the three pions transform as a
triplet. We will discuss below the classifica-

CP Violation

he faith of physicists in symmetries of
Tnature, so shaken by the observation

of parity violation in 1956, was soon
restored by invocation of a new symmetry j 30
principle—CP conservation—to interpret
parity-violating processes. This principle
states that a process is indistinguishable from
its mirror image provided all particles in the
mirror image are replaced by their antiparti-
cles. Alas, in 1964 this principle also was
shattered with the results of an experiment
on the decay of neutral kaons.

According to the classic analysis of M.
Gell-Mann and A. Pais, neutral kaons exist
in two forms: K, with an even CP eigen- !
value and decaying with a relatively short }
lifetime of 10710 second into two pions, and f
K¢, with an odd CP eigenvalue and decaying |
with a lifetime of about 5 X 1078 second into | \
three pions. CP conservation prohibited the
decay of the longer lived K{ into two pions. E 0.9996 0.9998
But in an experiment at Brookhaven, J. { cos 0
\
!

T

494 <m™ <504

Number of Events

1.0000

Christenson, J. Cronin, V. Fitch, and R.
Turlay found that about | in 500 X{ mesons
decays into two pions. This first observation L —
of CP violation has been confirmed in many
other experiments on the neutral kaon sys-
tem, but to date no other CP-violating effects
have been found. The underlying mecha-
nism of CP violation remains to be under-
stood, and an implication of the phenome-
non, the breakdown of time-reversal in-
variance (which is necessary to maintain
CPT conservation), remains to be ob-
served. M

Evidence for the CP-violating decay of K! into two pions. Here the number
of events in which the invariant mass (m*) of the decay products was in close
proximity to the mass of the neutral kaon is plotted versus the cosine of the
angle O between the K beam and the vector sum of the momenta of the
decay products. The peak in the number of events at cos © = 1 (indicative of
two-body decays) could only be explained as the decay of K? into two pions
with a branching ratio of about 2 X 1073, (Adapted from “Evidence for the
2n Decay of the K? Meson” by J. H. Christenson, J. W. Cronin, V. L. Fitch,
and R. Turlay, Physical Review Letters 13(1964):138.)
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tion of strongly interacting particles into
multiplets of SU(3), a scheme that combines
strong isospin with the quantum number
called strangeness, or strong hypercharge.
(For a more complete discussion of continu-
ous symmetries and internal global sym-
metries such as SU(2), see Lecture Notes 2
and 4.)

Exact, or unbroken, symmetries also play
a fundamental role in the construction of
theories: exact rotational invariance leads to
the exact conservation of angular momen-
tum, and exact translational invariance in
space-time leads to the exact conservation of
energy and momentum. We will now discuss
how the exact phase invariance of elec-
trodynamics leads to the exact conservation
of electric charge.

Global U(1) Invariance and Conservation
Laws. In quantum field theory the dynamics
of a system are encoded in a function of the
fields called a Lagrangian, which is related to
the energy of the system. The Lagrangian is
the most convenient means for studying the
symmetries of the theory because it is usually
a simple task to check if the Lagrangian
remains unchanged under particular sym-
metry operations.

An electron is described in quantum field
theory by a complex field,

\Velcclmn = (\Vl + I\V2)/\/§ 3

and a positron is described by the complex
conjugate of that field,

Wpositron = (\Vl - IWZ)/\/E .

Although the real fields y; and y, are
separately each able to describe a spin-%2
particle, the two together are necessary to
describe a particle with electric charge.*

The Lagrangian of quantum elec-
trodynamics is unchanged by the continuous
operation of multiplying the electron field by

*The real fields y; and vy, are four-component
Majorana fields that together make up the standard
four-component complex Dirac spinor field.
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an arbitrary phase, that is, by the transfor-
mation

y— EMQ\V ,

where A is an arbitary real number and Q is
the electric charge operator associated with
the field. The eigenvalue of Q is —1 for an
electron and +1 for a positron. This set of
phase transformations forms the global sym-
metry group U(1) (the set of unitary 1 X 1
matrices). In QED this symmetry is un-
broken, and electric charge is a conserved
quantum number of the system.

There are other global U(l) symmetries
relevant in particle physics, and each one
implies a conserved quantum number. For
example, baryon number conservation is as-
sociated with a U(l) phase rotation of all
baryon fields by an amount ¢, where B= 1
for protons and neutrons, B = 4 for quarks,
and B = 0 for leptons. Analogously, electron
number is conserved if the field of the elec-
tron neutrino is assigned the same electron
number as the field of the electron and all
other fields are assigned an electron number
of zero. The same holds true for muon num-
ber and tau number. Thus a global U(l)
phase symmetry seems to operate on each
type of lepton. (Possible violation of muon-
number conservation is discussed in “Ex-
periments To Test Unification Schemes.””)

The Principle of Local Symmetry

We are now ready to distinguish a global
phase symmetry from a local one and exam-
ine the dynamical consequences that emerge
from the latter. Figure 7 illustrates what hap-

pens to the electron field under the global
phase transformation y — e"*@y. For con-
venience, space-time is represented by a set
of discrete points labeled by the index j. The
phase of the electron field at each point is
represented by an arrow that rotates about
the point, and the kinetic energy of the field
is represented by springs connecting the ar-
rows at different space-time points. A global
U(1) transformation rotates every two-di-
mensional vector by the same arbitrary angle
A: 8;,— 6; + QA, where Q is the electric
charge. In order for the Lagrangian to be
invariant under this global phase rotation, it
is clearly sufficient for it to be a function only
of the phase differences (8; — 6,). Both the free
electron terms and the interaction terms in
the QED Lagrangian are invariant under this
continuous global symmetry.

A local U(1) transformation, in contrast,
rotates every two-dimensional vector by a
different angle A;. This local transformation,
unlike its global counterpart, does rot leave
the Lagrangian of the free electron invariant.
As represented in Fig. 7 by the stretching and
compressing of the springs, the kinetic
energy of the electron changes under local
phase transformations. Nevertheless, the full
Lagrangian of quantum electrodynamics is
invariant under these local U(1) transforma-
tions. The electromagnetic field (4,)
precisely compensates for the local phase
rotation and the Lagrangian is left invariant.
This is represented in Fig. 7 by restoring the
stretched and compressed springs to their
initial tension. Thus, the kinetic energy of the
electron (the energy stored in the springs) is
the same before and after the local phase
transformation.

In our discrete notation, the full La-

Fig. 7. Global versus local phase transformations. The arrows represent the phases
of an electron field at four discrete points labeled by j = 1, 2, 3, and 4. The springs
represent the kinetic energy of the electrons. A global phase transformation does
not change the tension in the springs and therefore costs no energy. A local phase
transformation without gauge interactions stretches and compresses the springs
and thus does cost energy. However introduction of the gauge field (represented by
the white haze) exactly compensates for the local phase transformation of the
electron field and the springs return to their original tension so that local phase
transformations with gauge interactions do not cost energy.
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\

grangian is a function of 0, — 6 + A Q and is
invariant under the simultaneous trans-
formations

9,-—>GJ-+ QAJ and Ajk—’Ajk—Aj+Ak.

The matrix with elements A is the discrete
space-time analogue of the electromagnetic
potential defined on the links between the
points k and j. Thus, if one starts with a
theory of free electrons with no interactions
and demands that the physics remain in-
variant under local phase transformation of
the electron fields, then one induces the stan-
dard electromagnetic interactions between
the electron current J* and photon field A4,
as shown in Figs. 5 and 8. From this point of
view, Maxwell’s equations can be viewed asa
consequence of the local U(1) phase in-
variance. Although this local invariance was
originally viewed as a curiosity of QED, it is
now viewed as the guiding principle for con-
structing field theories. The invariance is
usually termed gauge invariance, and the
photon is referred to as a gauge particle since
it mediates the U(1) gauge interaction. It is
worth emphasizing that local U(l) in-
variance implies that the photon is massless
because the term that would describe a
massive photon is not itself invariant under
local U(1) transformations.

The local gauge invariance of QED is the
prototype for theories of both the weak and
the strong interactions. Obviously, since
neither of these is a long-range interaction,
some additional features must be at work to
account for their different properties. Before
turning to a discussion of these features, we
stress that in theories based on local gauge
invariance, currents always play an impor-
tant role. In classical electromagnetism the
fundamental interaction takes place between
the vector potential and the electron current;
this is reflected in quantum electrodynamics
by Feynman diagrams: the virtual photon
(the gauge field) ties into the current
produced by the moving electron (see Fig. 8).
As will become clear below, a similar situ-
ation exists in the strong interaction and,
more important, in the weak interaction.
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Fig. 8. The U(1) local symmetry of QED implies the existence of a gauge field to
compensate for the local phase transformation of the electrically charged matter
fields. The generator of the U(1) local phase transformation is Q, the electric
charge operator defined in the figure in terms of the current density J°. The gauge
field A, interacts with the electrically charged matter fields through the current J *.
The coupling strength is ¢, the charge of the electron.

The Strong Interaction

In an atom electrons are bound to the
nucleus by the Coulomb force and occupy a
region about 1078 centimeter in extent. The
nucleus itself is a tightly bound collection of
protons and neutrons confined to a region

about 107'? centimeter across. As already
emphasized, the force that binds the protons
and neutrons together to form the nucleus is
much stronger and considerably shorter in
range than the electromagnetic force. Lep-
tons do not feel this strong force; particles
that do participate in the strong interactions
are called hadrons.



Particle Physics and the Standard Model

n 1961 M. Gell-Mann and in-
Idependemly Y. Ne’eman proposed a sys-

tem for classifying the roughly one hun-
dred baryons and mesons known at the time.
This “Eightfold Way” was based on the
SU(3) group, which has eight independent
symmetry operations. According to this sys-
tem, hadrons with the same baryon number,
spin angular momentum, and parity and
with electric charge, strangeness (or hyper-
charge), isotopic spin, and mass related by
certain rules were grouped into large multi-
plets encompassing the already established
isospin multiplets, such as the neutron and
proton doublet or the negative, neutral, and
positive pion triplet. Most of the known
hadrons fit quite neatly into octets. However,
the decuplet partly filled by the quartet of A
baryons and the triplet of £(1385) baryons
lacked three members. Discovery of the
Z(1520) doublet was announced in 1962, and
these baryons satisfied the criteria for mem-

bership in the decuplet. This partial con- : '

firmation of the Eightfold Way motivated a
search at Brookhaven for the remaining
member, already named Q™ and predicted to
be stable against strong and electromagnetic
interactions, decaying (relatively slowly) by

the weak interaction. Other properties = '*

predicted for this particle were a baryon
number of 1, a spin angular momentum of
3/2, positive parity, negative electric charge, a
strangeness of —3, an isotopic spin of 0, and a
mass of about 1676 MeV.

A beam of 5-GeV negative kaons
produced at the AGS was directed into a
liquid-hydrogen bubble chamber, where the
Q™ was to be produced by reaction of the
kaons with protons. The tracks of the décay
products of the new particle were then sought
in the bubble-chamber photographs. In early

1964 a candidate event was found for decay
of an Q" into a 7~ and a E° one of three
possible decay modes. Within several weeks,
by coincidence and good fortune, another Q™
was found, this time decaying into a A%and a
K™, the mode now known to be dominant.

Analysis of the tracks for these two events
confirmed the predicted mass and strange-
ness, and further studies confirmed the
predicted spin and parity. Discovery of the
€Y established the Eightfold Way as a viable
description of hadronic states. W

,J’.“
¢

. ._;..".__Eb\

The Q0 was first detected in the bubble-chamber photograph reproduced above.

A K~ entered the bubble chamber from the bottom (track 1) and collided with a

proton. The collision produced an Q™ (track 3), a K (track 2), and a K’, which,

being neutral, left no track and must have decayed outside the bubble chamber.

The Q~ decayed into a = (track 4) and a Z°. The Z° in turn decayed into a A°
and a n°. The A° decayed into a ©~ (track 5) and a proton (track 6), and the n°
very quickly decayed into two gamma rays, one of which (track 7) created an ¢ -

e* pair within the bubble chamber. (Photo courtesy of the Niels Bohr Library of
the American Institute of Physics and Brookhaven National Laboratory.)




The mystery of the strong force and the
structure of nuclei seemed very intractable as
little as fifteen years ago. Studying the rele-
vant distance scales requires machines that
can accelerate protons or electrons to
energies of 1 GeV and beyond. Experiments
with less energetic probes during the 1950s
revealed two very interesting facts. First, the
strong force does not distinguish between
protons and neutrons. (In more technical
language, the proton and the neutron trans-
form into each other under isospin rotations,
and the Lagrangian of the strong interaction
is invariant under these rotations.) Second,
the structure of protons and neutrons is as
rich as that of nuclei. Furthermore, many
new hadrons were discovered that were ap-
parently just as “elementary” as protons and
neutrons.

The table of “elementary particles” in the
mid-1960s displayed much of the same com-
plexity and symmetry as the periodic table of
the elements. In 1961 both Gell-Mann and
Ne’eman proposed that all hadrons could be
classified in multiplets of the symmetry
group called SU(3). The great triumph of this
proposal was the prediction and subsequent
discovery of a new hadron, the omega minus.
This hadron was needed to fill a vacant space
in one of the SU(3) multiplets (Fig. 9).

In spite of the SU(3) classification scheme,
the belief that all of these so-called elemen-
tary particles were truly elementary became
more and more untenable. The most con-
tradictory evidence was the finite size of
hadrons (about 107'3 centimeter), which
drastically contrasted with the point-like
nature of the leptons. Just as the periodic
table was eventually explained in terms of a
few basic building blocks, so the hadronic
zoo was eventually tamed by postulating the
existence of a small number of “truly
elementary point-like particles” called
quarks. In 1963 Gell-Mann and, in-
dependently, Zweig realized that all hadrons
could be constructed from three spin- fer-
mions, designated u, d, and s (up, down, and
strange). The SU(3) symmetry that mani-
fested itself in the table of “elementary parti-
cles” arose from an invariance of the La-
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Table of ‘““‘Elementary Particles”

BARYONS
Strong
Spin—1/2 Octet fsospin Mass
N (udd) (uud)
L P 172 939
A (uds)
I + 0 A{1116)
0 Z "luus) 1 2(1193)
= “(uss) =
B 1/2 E(1348)
-1 —12 0 12 1
I3
spin6-3/2 Decuplet
- + ++
ddd d
,Qladd)  Atudd) A (uud) A uuu) 3/2 A{1232)
1 £%(1385)
1/2 =*(1530)
0 €2{1672)

Fig. 9. The Eightfold Way classified the hadrons into multiplets of the
symmetry group SU(3). Particles of each SU(3) multiplet that lie on a
horizontal line form strong-isospin (SU(2)) multiplets. Each particle is
plotted according to the quantum numbers 1; (the third component of strong
isospin) and strong hypercharge Y (Y =S -+ B, where S is strangeness and B is
baryon number). These quantum numbers correspond to the two diagonal
generators of SU(3). The quantum numbers of each particle are easily
understood in terms of its fundamental quark constituents. Baryons contain
three quarks and mesons contain guark-antiquark pairs. Baryons in the spin-
3/2 decuplet are obtained from baryons in the spin-%: octet by changing the
spin and SU(3) flavor quantum numbers of the three quark wave functions.
For example, the three quarks that compose the neutron in the spin-: octet can
reorient their spins to form the A® in the spin-3/2 decuplet. Similar changes in
the meson quark-antiguark wave functions change the spin-0 meson octet into
the spin-1 meson octet.

|
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MESONS
Stroqg
Mass Isospin Spin—0 Octet
KO (d5) K*us)
K{495) 1/2 : 4
n (549) 0 _ 7
7 (139) 1 woid) ewd ™
{uutdd)A/2 / (ud)
7 0
K{495) 1/2 K ts5)
1/2 0 1/2 1
|
Spin—1 Oclet
, *0, ~ »4 -
K (892} 172 Sl
ow
w (783) 0 p-ida) *p0 p* -
p (770) 1 - {ud
(uuxddIA/2 ud)
*0
K" (892) 1/2 e
-1/2 0 1/2 1
]
Quarks
Electric
Name Symbol Charge Y
Up 213 173
Down -3 B
Strange -1/3  ~2/3

grangian of the strong interaction to rota-
tions among these three objects. This global
symmetry is exact only if the u, d, and s
quarks have identical masses, which implies
that the particle states populating a given
SU(3) multiplet also have the same mass.
Since this is certainly not the case, SU(3) is a
broken global symmetry. The dominant
breaking is presumed to arise, as in the exam-
ple of e, u, and 7, from the differences in the
masses of the «, d, and s quarks. The origin of
these quark masses is one of the great un-
answered questions. It is established, how-
ever, that SU(3) symmetry among the u, d,
and s quarks is preserved by the strong inter-
action. Nowadays, one refers to this SU(3) as
a flavor symmetry, with u, d, and s represent-
ing different quark flavors. This nomen-\
clature is to distinguish it from another and :
quite different SU(3) symmetry possessed by
quarks, a local symmetry that is associated
directly with the strong force and has become
known as the SU(3) of color. The theory
resulting from this symmetry is called quan-
tum chromodynamics (QCD), and we now
turn our attention to a discussion of its
properties and structure.

The fundamental structure of quantum
chromodynamics mimics that of quantum
electrodynamics in that it, too, is a gauge
theory (Fig. 10). The role of electric charge is
played by three ‘“‘colors” with which each
quark is endowed—red, green, and blue. The
three color varieties of each quark form a
triplet under the SU(3) local gauge sym-
metry. A local phase transformation of the
quark field is now considerably extended
since it can rotate the color and thereby
change a red quark into a blue one. The local
gauge transformations of quantum elec-
trodynamics simply change the phase of an
electron, whereas the color transformations
of QCD actually change the particle. (Note
that these two types of phase transformation
are totally independent of each other.)

We explained earlier that the freedom to
change the local phase of the electron field
forces the introduction of the photon field
(sometimes called the gauge field) to keep the
Lagrangian (and therefore the resulting phys-
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ics) invariant under these local phase
changes. This is the principle of local sym-
metry. A similar procedure applied to the
quark field induces the so-called chromo-
dynamic force. There are eight independent
symmetry transformations that change the
color of a quark and these must be com-
pensated for by the introduction of eight
gauge fields, or spin-1 bosons (analogous to
the single photon of quantum elec-
trodynamics). Extension of the local U(1)
gauge invariance of QED to more com-
plicated symmetries such as SU(2) and SU(3)
was first done by Yang and Mills in 1954,
These larger symmetry groups involve so-
called non-Abelian, or non-commuting alge-
bras (in which AB # BA), so it has become
customary to refer to this class of theories as
“non-Abelian gauge theories.” An alterna-
tive term is simply “Yang-Mills theories.”

The eight gauge bosons of QCD are re-
ferred to by the bastardized term “gluon,”
since they represent the glue that holds the
physical hadrons, such as the proton,
together. The interactions of gluons with
quarks are depicted in Fig. 10. Although
gluons are the counterpart to photons in that
they have unit spin and are massless, they
possess one crucial property not shared by
photons: they themselves carry color. Thus
they not only mediate the color force but also
carry it; it is as if photons were charged. This
difference (it is the difference between an
Abelian and a non-Abelian gauge theory) has
many profound physical consequences. For
example, because gluons carry color they can
(unlike photons) interact with themselves
(see Fig. 10) and, in effect, weaken the force
of the color charge at short distances. The
opposite effect occurs in quantum elec-
trodynamics: screening effects weaken the
effective electric charge at long distances. (As
mentioned above, a virtual photon emanat-
ing from an electron can create a virtual
electron-positron pair. This polarization
screens, or effectively decreases, the elec-
tron’s charge.)

The weakening of color charge at short
distances goes by the name of asymptotic
Sfreedom. Asymptotic freedom was first ob-
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SU(3) Local Symmetry of QCD
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Fig. 10. The SU(3) local color symmetry implies the existence of eight massless
gauge fields (the gluons) to compensate for the eight independent local transforma-
tions of the colored quark fields. The subscriptsr, g, and b on the gluon and quark
fields correspond respectively to red, green, and blue color charges. The eight
gluons carry color and obey the non-Abelian algebra of the SU(3) generators (see
Lecture Note 4). The interactions induced by the local SU(3) color symmetry
include a quark-gluon coupling as well as two types of gluon self-interactions (one
proportional to the couping g, and the other proportional to g?).
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QCD on a Cray:
the masses of elementary particles

by Gerald Guralnik, Tony Warnock, and Charles Zemach

ow can we extract answers from
H QCD at energies below 1 GeV?

As noted in the text, the confine-
ment of quarks suggests that weak-coupling
perturbative methods are not going to be
successful at these energies. Nevertheless, if
QCD is a valid theory it must explain the
multiplicities, masses, and couplings of the
experimentally observed strongly interacting
particles. These would emerge from the the-
ory as bound states and resonances of quarks
and gluons. A valid theory must also account
for the apparent absence of isolated quark
states and might predict the existence and
properties of particles (such as glueballs) that
have not yet been seen.

The most promising nonperturbative for-
mulation of QCD exploits the Feynman path
integral. Physical quantities are expressed as
integrals of the quark and gluon fields over
the space-time continuum with the QCD
Lagrangian appearing in an exponential as a
kind of Gibbs weight factor. This is directly
analogous to the partition function formula-
tion of statistical machanics. The path inte-
gral prescription for strong interaction
dynamics becomes well defined mathe-
matically when the space-time continuum is
approximated by a discrete four-dimensional
lattice of finite size and the integrals are
evaluated by Monte Carlo sampling.

The original Monte Carlo ideas of Metrop-
olis and Ulam have now been applied 1o
QCD by many researchers. These efforts
have given credibility, but not confirmation,
to the hope that computer simulations might
indeed provide critical tests of QCD and
significant numerical results. With consider-
able patience (on the order of many months
of computer time)a VAX 11/780 can be used
to study universes of about 3000 space-time
points, Such a universe is barely large enough
1o contain a proton and not really adequate
for a quantitative calculation. Consequently,
with these methods, any result from a com-
puter of VAX power is, at best, only an
indication of what a well-done numerical
simulation might produce.

We believe that g successful computer
simulation must combine the following: (1)
physical and mathematical ingenuity to
search out the best formulations of problems
still unsolved in principle; (2) sophisticated
numerical analysis and computer program-
ming; and (3) a computer with the speed,
memory, and input/output rate of the Cray
XMP with a solid-state disk (or better). We
have done calculations of particle masses on
a lattice of 55,296 space-time points using the
Cray XMP. Using new methods developed
with coworkers R. Gupta, J. Mandula, and
A. Patel, we are examining glueball masses,
renormalization group behavior, and the
behavior of the theory on much larger lat-
tices. The results to date support the belief
that QCD describes interactions of the
elementary particles and that these numeri-
cal methods are currently the most powerful
means for extracting the predictive content
of QCD.

The calculations, which have two input
parameters (the pion mass and the long-
range quark-quark force constant in units of
the lattice spacing), provide estimates of
many measurable quantities. The accompa-
nying table shows some of our results on
elementary particle masses and certain
meson coupling strengths. These results rep-
resent several hundred hours of Cray time.
The quoted relative errors derive from the
statistical analysis of the Monte Carlo calcu-
lation itself rather than from a comparison
with experimental data. Significantly more
computer time would significantly reduce
the errors in the calculated masses and coupl-
ings.

Our work would not have been possible
without the support of C Division and many
of its staff. We have received generous sup-
port from Cray Research and are particularly
indebted 1o Bill Dissly and George Spix for
contribution of their skills and their time. l

Calculated and experimental values for the masses and coupling
strengths of some mesons and baryons.

Calculated Relative Experimental
Value Error Value
(MeV/c?) (%) (MeV/c?)
. Masses
[ p meson 767 18 769
© Excitedp 1426 27 13007
! 4 meson 1154 15 983
A, meson 1413 17 1275
Proton 989 23 940
A baryon 1199 17 1210
E Couplings
f, 121 21 93
f 211 15 144




baryons Scaling thus |
quark model.

served in deep inelastic scattering experi-
ments (see “Scaling in Deep Inelastic Scatter-
ing”). This phenomenon explains why
hadrons at high energies behave as if they
were made of almost free quarks even though
one knows that quarks must be tightly bound
together since they have never been ex-
perimentally observed in their free state. The
weakening of the force at high energies
means that we can use perturbation theory to
calculate hadronic processes at these
energies.

4?2

nucleon, Ongmally these consntuents were named partons by R. Feynman but, by
. ies as thelr electric charge J. Bjorken and E. Paschos identified

and involved momentum transfers uptoa few GeV/c. I

The self-interaction of the gluons also ex-
plains the apparently permanent confine-
ment of quarks. At long distances it leads to
such a proliferation of virtual gluons that the
color charge effectively grows without limit,
forbidding the propagation of al/l colored

‘particles. Only bleached, or color-neutral,

states (such as baryons, which have equal
proportions of red, blue, and green, or
mesons which have equal proportions of red-
antired, green-antigreen, and blue-antiblue)
are immune from this confinement. Thus all

observable hadrons are necessarily colorless,
whereas quarks and gluons are permanently
confined. This is just as well since gluons are
massless, and by analogy with the photon,
unconfined massless gluons should give rise
to a long-range, Coulomb-like, color force in
the strong interactions. Such a force is clearly
at variance with experiment! Even though
color is confined, residual strong color forces
can still “leak out” in the form of color-
neutral pions or other hadrons and be re-
sponsible for the binding of protons and
neutrons in nuclei (much as residual elec-
tromagnetic forces bind atoms together to
form molecules).

The success of QCD in explaining short-
distance behavior and its aesthetic appeal as
a generalization of QED have given it its
place in the standard model. However, con-
fidence in this theory still awaits convincing
calculations of phenomena at distance scales’
of 107'3 centimeter, where the “strong”
nature of the force becomes dominant and
perturbation theory is no longer valid. (Lat-
tice gauge theory calculations of the hadronic
spectrum are becoming more and more re-
liable. See “QCD on a Cray: The Masses of

lementary Particles.”)

The Weak Interaction

Many nuclei are known to be unstable and
to emit several kinds of particles when they
decay; historically these particles were called
alpha particles, beta rays, and gamma rays.
These three are now associated with three
quite different modes of decay. An alpha
particle, itself a helium nucleus, is emitted
during the strong-interaction decay mode
known as fission. Large nuclei that are only
loosely bound by the strong force (such as
uranium-238) can split into two stable
pieces, one of which is an alpha particle. A
gamma ray is simply a photon with “high”
energy (above a few MeV) and is emitted
during the decay of an excited nucleus. A
beta ray is an electron emitted when a neu-|
tron in a nucleus decays into a proton, an
electron, and an electron antineutrino (n—
+e +v,, see Fig. 11). The proton remains in|
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/t e /I the nucleus, and the electron and its anti-

neutrino escape. This decay mode is
{a) characterized as weak because it proceeds
much more slowly than most elec-
tromagnetic decays (see Table 1). Other
baryons may also undergo beta decay.

Beta decay remained very mysterious for a
long time because it seemed to violate
energy-momentum conservation. The free
neutron was observed to decay into two
particles, a proton and an electron, each with
a spectrum of energies, whereas energy-
momentum conservation dictates that each
should have a unique energy. To solve this
dilemma, Pauli invoked the neutrino, a
massless, neutral fermion that participates
only in weak interactions.

The Fermi Theory. Beta decay is just one of
many manifestations of the weak interaction.
By the 1950s it was known that all weak
processes could be concisely described in
terms of the current-current interaction first
proposed in 1934 by Fermi. The charged
weak currents J¥e and Jyea change the
electric charge of a fermion by one unit and
can be represented by the sum of the Feyn-
man diagrams of Fig. 1la. In order to de-
scribe the maximal parity violation, (that is,
the maximal right-left asymmetry) observed
in weak interactions, the charged weak cur-
rent includes only left-handed fermion fields.
‘ (These are defined in Fig. 12 and Lecture
' Note8)

Fermi’s current-current interaction is then
given by all the processes included in the
| (b) product (Ge/V2) (Jdeak X Jueak) Where
Jweak means all arrows in Fig. 11a are re-
E versed. This interaction is in marked con-
| trast to quantum electrodynamics in which
i two currents interact through the exchange of

. .. . a virtual photon (see Fig. 3). In weak
Fig. 11. (a) Components of the charge-raising weak current J},,, are represented in processes two charge-changing currents ap-

the figure by Feynman diagrams in which a neutron changes into a proton, an pear to interact locally (that is, at a single

+
J
weak

|
1

electron into an electron neutrino, and a muon into a muon neutrino. The charge- point) without the help of such an inter-
lowering current J,,, is represented by reversing the arrows. (b) Beta decay mediary. The coupling constant for this local
(shown in the figure) and other low-energy weak processes are well described by the interaction, denoted by Gg and called the
Fermi interaction J!,,, X J,,... The figure shows the Feynman diagram of the Fermi constant, is not dimensionless like the
Fermi interaction for beta decay. coupling parameter a in QED, but has the
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Fig. 12. A Dirac spinor field can be decomposed into left-
and right-handed pieces. A left-handed field creates two
types of particle states at ultrarelativistic energies—u,, a
particle with spin opposite to the direction of motion, and uy,

an antiparticle with spin along the direction of motion. Only

dimension of mass ™2 or energy” > . In units of
energy, the measured value of Gg'/? equals
293 GeV. Thus the strength of the weak
processes seems to be determined by a speci-

fic energy scale. But why?

Predictions of the W boson. An explanation
emerges if we postulate the existence of an
intermediary for the weak interactions. Re-
call from Fig. 3 that the exchanged, or vir-
tual, photons in QED basically correspond to
the Coulomb potential a/r, whose Fourier
transform is a/q°, where ¢ is the momentum
of the virtual photon. It is tempting to sug-
gest that the nearly zero range of the weak
interaction is only apparent in that the two
charged currents interact through a potential
of the form o’[exp(—Mu1))/r (a form orig-
inally proposed by Yukawa for the short-
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range force between nucleons), where a’ is
the analogue of a and the mass My is so large
that this potential has essentially no range.
The Fourier transform of this potential,
o’ /(q> + M%), suggests that, if this idea is
correct, the interaction between the weak
currents is mediated by a “heavy photon” of
mass My, Nowadays this particle is called
the W boson; its existence explains the short
range of the weak interactions.

Notice that at low energies, or, equi-
valently, when M3 > ¢ the Fourier trans-
form, or so-called propagator of the W
boson, reduces 1o o’/(M %), and since this
factor multiplies the two currents, it must be
proportional to Fermi’s constant. Thus the
existence of the W boson gives a natural
explanation of why G is not dimensionless.

Now, since both the weak and electro-

Right-Handed
Antiparticle State

YR
+ -6 3
|
Left-Handed
Antiparticle State
u
+ 3 3

left-handed fields contribute to the weak charged currents
shown in Fig. 11. The left- and right-handedness (or
chirality) of a field describes a Lorentz covariant decom-
position of Dirac spinor fields.

magnetic interactions involve electric
charge, these two might be manifestations of
the same basic force. If they were, then a’
might be the same as a and Gg would be
proportional to a/M 3. Thus the existence of
a very massive W boson can explain not only
the short range but also the weakness of weak
interactions relative to electromagnetic in-
teractions! This argument not only predicts
the existence of a W boson but also yields a
rough estimate of its mass:

Mw = Va/Gg =25GeV/c?.

This prediction of a new particle was made in
the 1950s, when such energies were well
beyond reach of the existing accelerators.
Arguments like the one above convinced
physicists that a theoretical unification o
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Table 2 |
|
Multiplets and quantum numbers in the SU(2) X U(1) electroweak theory. :
Weak Weak Electric
Isotopic Hypercharge Charge Q f
Charge I, Y (=I;+ 1Y) |
Quarks |
Cug | ) s Y E
SU(2) Doublet | |
| dy | ~lf Y s
Vg | 0 4/3 ¥
SU(2) Singlets T
| dy | 0 —¥ -3
Leptons
(AN Y, ~1 0 |
SU(2) Doublet |
e | —tfy -1 -]
SU(2)Singlet  “ex | 0 -2 -1 |
Gauge Bosons
W ! 0 1
SU(2) Triplet W, 0 0 0
W -1 0 =1
SU(2) Singlet B | 0 0 0 |
! Higgs Boson f
ot Y 1 1 |
SU(2) Doublet | :
g —t 1 0 |

electromagnetic and weak interactions must
be possible. Several attempts were made in
the 1950s and 1960s, notably by Schwinger
and his student Glashow and by Ward and
Salam, to construct an “electroweak theory”
in terms of a local gauge (Yang-Mills) theory
that generalizes QED. Ultimately, Weinberg
set forth the modern solution to giving

masses to the weak bosons in 1967, although
it was not accepted as such until 't Hooft and
Veltman showed in 1971 that it constituted a
consistent quantum field theory. The success
of the electroweak theory culminated in 1982
with the discovery at CERN of the W boson
at almost exactly the prediced mass. Notice,
incidentally, that at sufficiently high

energies, where g2 > M7y, the weak interac-
tion becomes comparable in strength to the
electromagnetic. Thus we see explicitly how
the apparent strength of the interaction de-
pends on the wavelength of the probe.

The SU(2) X U(Q1) Electroweak Theory.
Since quantum electrodynamics is a gauge
theory based on local U(l) invariance; it is
not too surprising that the theory unifying
the electromagnetic and weak forces is also a
gauge theory. Construction of such a theory
required overcoming both technical and phe-
nomenological problems.

The technical problem concerned the fact
that an electroweak gauge theory is
necessarily a Yang-Mills theory (that is, a
theory in which the gauge fields interact with
each other); the gauge fields, namely the W
bosons, must be charged to mediate the
charge-changing weak interactions and there-
fore by definition must interact with each
other electromagnetically through the
photon. Moreover, the local gauge symmetry
of the theory must be broken because an
unbroken symmetry would require all the
gauge particles to be massless like the photon
and the gluons, whereas the W boson must
be massive. A major theoretical difficulty
was understanding how to break a Yang-
Mills gauge symmetry in a consistent way.
(The solution is presented below.)

In addition to the technical issue, there
was the phenomenological problem of choos-
ing the correct local symmetry group. The
most natural choice was SU(2) because the
low-lying states (that is, the observed quarks
and leptons) seemed to form doublets under
the weak interaction. For example, a W~
changes v, into ¢, v, into W, or i into d (where
all are left-handed fields), and the W™ effects
the reverse operation. Moreover, the three
gauge bosons required to compensate for the
three independent phase rotations of a local
SU(2) symmetry could be identified with the
W?*, the W™, and the photon. Un-
fortunately, this simplistic scenario does not
work: it gives the wrong electric charge as-
signments for the quarks and leptons in the
SU(2) doublets. Specifically, electric charge
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O would be equal to the SU(2) charge /3, and
the values of 15 for a doublet are =Y. This is
clearly the wrong charge; In addition, SU(2)
would not distinguish the charges of a quark
doublet (¥ and —') from those of a lepton
doublet (D and —1).

To get the correct charge assignments, we
can either put quarks and leptons into SU(2)
triplets (or larger multiplets) instead of
doublets, or we can enlarge the local sym-
metry group. The first possibility requires
the introduction of new heavy fermions to
fill the multiplets. The second possibility
requires the introduction of at least one new
U(1) symmetry (let’s call it weak hypercharge
Y), which yields the correct electric charge
assignments if we define

Q=5L+W"Y.

This is exactly the possibility that has been
confirmed experimentally. Indeed, the elec-
troweak theory of Glashow, Salam, and
Weinberg is a local gauge theory with the
symmetry group SU(2) X U(1). Table 2 gives
the quark and lepton multiplets and their
associated quantum numbers under SU(2) X
U(1), and Fig. 13 displays the interactions
defined by this local symmetry. There is one
coupling associated with each factor of SU(2)
X U(1), a coupling g for SU(2) and a coupling
g’/2 for U(1).

The addition of the local U(1) symmetry
introduces a new uncharged gauge particle
into the theory that gives rise to the so-called
neutral-current interactions. This new type
of weak interaction, which allows a neutrino
to interact with matter without changing its
identity, had not been observed when the
neutral weak boson was first proposed in
1961 by Glashow. Not until 1973, after all
the technical problems with the SU(2) X
U(1) theory had been worked out, were these
interactions observed in data taken at CERN
in 1969 (see Fig. 14).

The physical particle that mediates the
weak interaction between neutral currents is
the massive Z°. The electromagnetic interac-
tion between neutral currents is mediated by
the familiar massless photon. These two
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Symmetry of Electroweak Interactions

U
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Fig. 13. The unbroken SU(2) X U(1) local symmetry of the electroweak theory
has associated with it gauge fields, currents, and interactions analogous to
those of QED and QCD (see Figs. 5 and 8). The figure shows the lowest order
interactions between the fermion fields and the gauge fields. The SU(2)
interaction involves left-handed quark and lepton fields only. Thef in the U(1)
interaction stands for both left- and right-handed fermion fields with charge
Y,. (Y differs for the left- and right-handed components.) Although the gauge
fields are self-interacting as in the case of QCD, the SU(2) X U(1) symmetry
is broken and the gauge fields are massive so that their self-interactions
__contribute only very small corrections to the lowest order diagrams and are not
shown.

physical particles are different from the two
neutral gauge particles (B and W3) associated
with the unbroken SU(2) X U(1) symmetry
shown in Fig. 13. In fact, the photon and the
Z? are linear combinations of the neutral
gauge particles W3 and B:

A= B cos By + Wi sin Oy
and

7%= Bsin By, — W; cos By .

The mixing of SU(2) and U(1) gauge parti-
cles to give the physical particles is one result
of the fact that the SU(2) X U(1) symmetry
must be a broken symmetry.

Spontaneous Symmetry Breaking. The astute
reader may well be wondering how a local
gauge theory, which in QED required the
photon to be massless, can allow the
mediator of the weak interactions to be
massive, especially since the two forces are to
be unified. The solution to this paradox lies
in the curious way in which the SU(2) X U(1)
symmetry is broken.

As Nambu described so well, this breaking
is very much analogous to the symmetry
breaking that occurs in a superconductor. A
superconductor has a local U(1) symmetry,
namely, electromagnetism. The ground state,
however, is not invariant under this sym-
metry since it is an ordered state of bound
electron-electron pairs (the so-called Cooper
pairs) and therefore has a nonzero electric
charge distribution. As a result of this asym-
metry, photons inside the superconductor
acquire an effective mass, which is responsi-
ble for the Meissner effect. (A magnetic field
cannot penetrate into a superconductor; at
the surface it decreases exponentially at a
rate proportional to the effective mass of the
photon.)

In the weak interactions the symmetry is
also assumed to be broken by an asymmetry
of the ground state, which in this case is the
“vacuum.” The asymmetry is due to an or-
dered state of electrically neutral bosons that
carry the weak charge, the so-called Higgs
bosons. They break the SU(2) X U(1) sym-
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metry to give the U(1) of electromagnetism
in such a way that the W ¥ and the Z° obtain
masses and the photon remains massless. As
a result the charges /5 and Y associated with
SU(2) X U(1) are not conserved in weak
processes because the vacuum can absorb
these quantum numbers. The electric charge
Q associated with U(1) of electromagnetism
remains conserved.

The asymmetry of the ground state is fre-
quently referred to as spontaneous symmetry
breaking; it does not destroy the symmetry of
the Lagrangian but destroys only the sym-
metry of the states. This symmetry breaking
mechanism allows the electroweak La-
grangian to remain invariant under the local
symmetry transformations while the gauge
particles become massive (see Lecture Notes
3, 6, and 8 for details). ‘

In the spontaneously broken theory the
electromagnetic coupling e is given by the
expression e = gsin Oy, where

sin20y = g’2/(g2 +g’2) .

Thus, e and 6w are an alternative way of
expressing the couplings g and g, and just as
e is not determined in QED, the equally
important mixing angle 6y is not determined
by the electroweak theory. It is, however,
measured in the neutral-current interactions.
The experimental value is sin? Oy = 0.224 +
0.015. The theory predicts that

Mw/Mz= cos By

and 12
My=(2L)T
V2Ge sin By

These relations (which are changed only
slightly by small quantum corrections) and
the experimental value for the weak angle 8w
predict masses for the W* and Z° that are in
very good agreement with the 1983 observa-
tions of the W* and Z° at CERN.

In the electroweak theory quarks and lep-
tons also obtain mass by interacting with the
ordered vacuum state. However, the values
of their masses are not predicted by the
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Fig. 14. Neutral-current interactions were first identified in 1973 in photographs
taken with the CERN Gargamelle bubble chamber. The figure illustrates the
difference between neutral-current and charged-current interactions and shows the
bubble-chamber signature of each. The bubble tracks are created by charged
particles moving through superheated liquid freon. The incoming antineutrinos
interact with protons in the liquid. A neutral-current interaction leaves no track
Jrom a lepton, only a track from the positivley charged proton and perhaps some
tracks from pions. A charged-current interaction leaves a track from a positively
charged muon only.
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Electronic Weak Neutral Current

and T. D, Lee in 1956 as a solution to the so-called -0

puzzle: the decay products of the T meson (three © mesons)
differed in parity from the decay products of the 8 meson (two n
mesons), vet in all other respects the two mesons (now known as K¢
and K9 appeared identical, Yang and Lee’s heretical suggestion was
proved correct only months later by the cobalt-60 experiment of C. 8.
Wu and E. Ambler. This experiment, which revealed a decided
asymmetry in the direction of emission of beta particles from spin-
aligned cobalt-60 nuclei, established parity violation as a feature of
charged-current weak interactions and thus of the t and 0 decays.

Nonconservaticn of parity was first proposed by C. N. Yang

According to the Glashow-Weinberg-Salam theory unifying elec-
tromagnetic and weak interactions, parity violation should be a
feature also of neutral-current weak interactions but at a low level
because of competing electromagnetic interactions. In 1978 a group
of twenty physicists headed by C. Prescott observed a parity viola-
tion of almost exactly the predicted magnitude in a beautifully
executed experiment at the Stanford Linear Accelerator Center. The
experiment clearly revealed a small difference (of order 1 part in
10,000) between the cross sections for scattering of right- and left-
handed longitudinally polarized electrons by deuterons or protons. W

0 { a ' | F |
: LK, &P ST ST LI
§ -2x10~% *’ 4+++ + + |
< —ax10~4 -

Data from the SLAC experiment demonstrating parity
violation in neutral-current weak interactions. The asym-
metry plotted here is defined as the ratio of the difference
between the scattering cross sections for right- and left-

handed longitudinally polarized electrons to the sum of the
cross sections. The dashed line is the mean value of the forty-
four asymmetry measurements. (Adapted from SLAC Beam
Line, Report No. 8, October, 1978.)




theory but are proportional to arbitrary
parameters related to the strength of the
coupling of the quarks and leptons to the
Higgs boson.

The Higgs Boson. In the simplest version of
the spontanecously broken electroweak
model, the Higgs boson is a complex SU(2)
doublet consisting of four real fields (see
Table 2). These four fields are needed to
transform massless gauge fields into massive
ones. A massless gauge boson such as the
photon has only two orthogonal spin compo-
nents (both transverse to the direction of
motion), whereas a massive gauge boson has
three (two transverse and one longitudinal,
that is, in the direction of motion). In the
electroweak theory the W, the W™, and the
Z9 absorb three of the four real Higgs fields
to form their longitudinal spin components
and in so doing become massive. In more
picturesque language, the gauge bosons “eat”
the Higgs boson and become massive from
the feast. The remaining neutral Higgs field
is not used up in this magic transformation
from massless to massive gauge bosons and
therefore should be observable as a particle
in its own right. Unfortunately, its mass is
not fixed by the theory. However, it can
decay into quarks and leptons with a definite
signature. It is certainly a necessary compo-
nent of the theory and is presently being
looked for in high-energy experiments at
CERN. Its absence is a crucial missing link in
the confirmation of the standard model.

Open Problems. Our review of the standard
model would not be complete without men-
tion of some questions that it leaves un-
answered. We discussed above how the three
charged leptons (e, pu, and 1) may form a
triplet under some broken symmetry. This is
only part of the story. There are, in fact, three
quark-lepton families (Table 3), and these
three families may form a triplet under such
a broken symmetry. (There is a missing state
in this picture: conclusive evidence for the
top quark ¢ has yet to be presented. The
bottom quark b has been observed in
ete annihilation experiments at SLAC and
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w-, W+, Z°

n January 1983 two groups announced the results of separate searches at the CERN
Iproton-antiproton collider for the W™ and W™ vector bosons of the electroweak

model. One group, headed by C. Rubbia and A. Astbury, reported definite
identification, from among about a billion proton-antiproton collisions, of four W~
decays and one W+ decay. The mass reported by this group (81 = 5 GeV/c?) agrees well
with that predicted by the electroweak model (82 £ 2.4 GeV/c?). The other group,
headed by P. Darriulat and using a different detector, reported identification of four
possible W¥ decays, again from among a billion events. The charged vector bosons
were produced by annihilation of a quark inside a proton (vud) with an antiquark
inside an antiproton (nud):

d+u— W~
and

u+d—wt.

Since these reactions have a threshold energy equal to the mass of the charged bosons,
the colliding proton and antiproton beams were each accelerated to about 270 GeV to
provide the quarks with an average center-of-mass energy slightly above the threshold
energy. (Only one-half of the energy of a proton or antiproton is carried by its three
quark constituents; the other half is carried by the gluons.) Rubbia’s group dis-
tinguished the two-body decay of the bosons (into a charged and neutral lepton pair
such as e*v,) by two methods: selection of events in which the charged lepton
possessed a large momentum transverse to the axis of the colliding beams, and
selection of events in which a large amount of energy appeared to be missing,
presumably carried off by the (undetected) neutrino. Both methods converged on the
same events.

By mid 1983 each of the two groups had succeeded also in finding Z°, the neutral
vector boson of the electroweak model. They reported slightly different mass values
(96.5+ 1.5and 91.2 = 1.7 GeV/c?), both in agreement with the predicted value of 94.0
+ 2.5 GeV/cL For Z° the production and decay processes are given by

utu(ord+dy— Z%°— e + ¢t (oru” +pt).

In addition, both groups reported an asymmetry in the angular distribution of
charged leptons from the many more decays of W™~ and W that had been seen
since their discovery. This parity violation confirmed that the particles observed
are truly electroweak vector bosons. M
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Table 3
The three families of quarks and leptons and their masses. The subscripts R and L denote right- and left-handed
particles as defined in Fig. 12. |
Quark Mass Quarks Leptons Lepton Mass
(MeV/c?) (MeV/cd)
First Family ?
5 up Uy g o electron neutrino 0 i
8 down dp dr e, er electron 0.511 ‘
Second Family
‘ |
] 1270 charm ¢ cg (VL muon neutrino 0
175 strange S Sr ty MHg Mmuon 105.7
Third Family
|
{
45000 (D) top & R (voL tau neutrino 0 ‘
4250 bottom b by W tr tau 1784
Cornell.) The standard model says nothing form that does not radiate elec- the man who studied strangeness-changing

about why three identical families of quarks
and leptons should exist, nor does it give any
clue about the hierarchical pattern of their
masses (the T family is heavier than the p
family, which is heavier than the e family).
This hierarchy is both puzzling and intri-
guing. Perhaps there are even more un-
discovered families connected to the broken
family symmetry. The symmetry could be
global or local, and either case would predict
new, weaker interactions among quarks and
leptons.

Table 3 brings up two other open ques-
tions. First, we have listed the neutrinos as
being massless. Experimentally, however,
there exist only upper limits on their possible
masses. The most restrictive limit comes
from cosmology, which requires the sum of
neutrino masses to be less then 100 eV. It is
known from astrophysical observations that
most of the energy in the universe is in a

tromagnetically. If neutrinos have mass, they
could, in fact, be the dominant form of
energy in the universe today.

Second, we have listed ¥ and d, ¢ and s,
and ¢ and b as doublets under weak SU(2).
This is, however, only approximately true.
As a result of the broken family symmetry,
states with the same electric charge (the d, s,
and b quarks or the u, ¢, and ¢ quarks) can
mix, and the weak doublets that couple to the
W* bosons are actually given by u and &,
¢ and s”,and tand &’. A 3 X 3 unitary matrix
known as the Kobayashi-Maskawa (K-M)
matrix rotates the mass eigenstates (states of
definite mass) d, s, and b into the weak
doublet states ¢, s”, and #’. The K-M matrix
is conventionally written in terms of three
mixing angles and an arbitrary phase. The
largest mixing is between the d and s quarks
and is characterized by the Cabibbo angle
Oc (see Lecture Note 9),which is named for

weak decays such as Z° — p+ e~ + v,. The
observed value of sin O¢ is about 0.22. The
other mixing angles are all at least an order of
magnitude smaller. The structure of the K-M
matrix, like the masses of the quarks and
leptons, is a complete mystery.

Conclusions

Although many mysteries remain, the
standard model represents an intriguing and
compelling theoretical framework for our
present-day knowledge of the elementary
particles. Its great virtue is that all of the
known forces can be described as local gauge
theories in which the interactions are gener-
ated from the single unifying principle of
local gauge invariance. The fact that in quan-
tum field theory interactions can drastically
change their character with scale is crucial to

51



J/¥

n 1974 two experimental groups pursuing completely different
Ili'nes“of research at different laboratories simultaneously dis-

covered the same particle. (In deference to the different names
adopied by the two groups, the particle is now referred to as J/y.) At
SPEAR, the electron-positron storage ring at the Stanford Linear
Accelerator Center, a group led by B. Richter was investigating, as a
function of incident energy, the process of electron-positron annihila-
tionto hadrons They found an enormous and very narrow resonance
'saon energy of about 3.1 GeV and attributed it to the
forma ion of a new particle g ‘Meanwhile, at the Brookhaven AGS;a
group led by S. Ting was investigating essentially the inverse process,
the formation of electron-positron pairs in collisions of protons with
nucleons. They determined the number of pair-producing events as a
function of the mass of the parent particle (as deduced from the

ry. ldrge,  well-defined increase at a madss of about
. This resonance also was attributed to the formation of a
new pamcle J.

The surprisingly long lifetime of .J/y, as indicated by the narrow-
ness of the resonance, implied that its decay to lighter hadrons (all,
according 1o the original quark model, composed of the up, down,
and strange quarks) was somehow inhibited. This inhibition was

founcl 2

perhaps a meson contammg the  postulated charmed and anti-
charmed quarks. The latter interpretation was soon adopted, and in
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Graph of the evidence for formation of J/y in electron-
positron annihilations at SPEAR. (Adapted from SLAC
Beam Line, Volume 7, Number 11, November 1976.)
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energy and angular separation-of each electron- posxtron pair) and.

those terms the production of J/y in the two expenments can |
written

et+e octe.

For further elucidation of the J/y system, electron-positron annihila-
tion proved more fruitful than the hadronic production process.

This discovery of a fourth quark (which had been postulated by S.
Glashow and J. Bjorken in 1964 to achieve a syn
number of quarks and the known number of ‘érptons and agai
Glashow, J. lliopoulos; and L. Maiani in"1970 to reconcile the weak
interaction selection rules and the electroweak model) convinced
theorists that renormalizable gauge field theories, in conjunction
with spontaneous symmetry breaking, were the right tool for under-
standing the fundamental interactions of nature.. I

The group from M.I.T. and Brookhaven that discovered J /\y
in proton-nucleon collisions at the AGS, together with a
graph of their evidence. (Photo courtesy of the Niels Bohr

Library of the American Institute of Physics and
Brookhaven National Laboratory.) '
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with the discovery of T, a long-lived particle three times more massive than J/y. In
an experiment similar to that of Ting and coworkers and performed at the
Fermilab proton accelerator, the group determined the number of events giving rise to
muon-antimuon pairs as a function of the mass of the parent particle and found a sharp
increase at about 9.5 GeV/c2. Like the J/y system, the T system has been elucidated in
detail from experiments involving electron-positron collisions rather than proton

In 1977 a group led by L. Lederman provided evidence for a fifth, or bottom, quark

this approach. The essence of the standard
model is to put the physics of the apparently
separate strong, weak, and electromagnetic
interactions in the single language of local
gauge field theories, much as Maxwell put
the apparently separate physics of
Coulomb’s, Ampére’s, and Faraday’s laws
into the single language of classical field the-
ory.

It is very tempting to speculate that, be-
cause of the chameleon-like behavior of
quantum field theory, all the interactions are
simply manifestations of a single field the-
ory. Just as the “undetermined parameters™

collisions, in this case at Cornell’s electron storage ring, CESR.

The existence of the bottom quark, and of a sixth, or top, quark, was expected on the
basis of the discovery of the tau lepton at SPEAR in 1975 and Glashow and Bjorken’s
1964 argument of quark-lepton symmetry. Recent results from high-energy proton-
antiproton collision experiments at CERN have been interpreted as possible evidence
for the top quark with a mass somewhere between 30 and 50 GeV/c2 H

€p and g were related to the velocity of light
through Maxwell’s unification of electricity
and magnetism, so the undetermined
parameters of the standard model (such as
quark and lepton masses and mixing angles)
might be fixed by embedding the standard
model in some grand unified theory.

A great deal of effort has been focused on
this question during the past few years, and
some of the problems and successes are dis-
cussed in “Toward a Unified Theory” and
“Supersymmetry at 100 GeV.” Although
hints of a solution have emerged, it is fair to
say that we arc still a long way from for-

mulating an ultimate synthesis of all physical
laws. Perhaps one of the reasons for this is
that the role of gravitation still remains mys-
terious. This weakest of all the forces, whose
effects are so dramatic in the macroscopic
world, may well hold the key to a truly deep
understanding of the physical world. Many
particle physicists are therefore turning their
attention to the Einsteinian view in which
geometry becomes the language of ex-
pression. This has led to many weird and
wonderful speculations concerning higher
dimensions, complex manifolds, and other
arcane subjects.

An alternative approach to these questions
has been to peel yet another skin off the
onion and suggest that the quarks and lep-
tons are themselves composite objects made
of still more elementary objects called
preons. After all, the proliferation of quarks,
leptons, gauge bosons, and Higgs particles is
beginning to resemble the situation in the
early 1960s when the proliferation of the
observed hadronic states made way for the
introduction of quarks. Maybe introducing
preons can account for the mystery of flavor:
e, y, and 1, for example, may simply be
bound states of such objects.

Regardless of whether the ultimate under-
standing of the structure of matter, should
there be one, lies in the realm of preons,
some single primitive group, higher
dimensions, or whatever, the standard
model represents the first great step in that
direction. The situation appears ripe for
some kind of grand unification. Where are
you, Maxwell? B

Further Reading

Gerard ’t Hooft. “Gauge Theories of the Forces Between Elementary Particles.” Scientific American, June 1980, pp. 104-137.

Howard Georgi. “A Unified Theory of Elementary Particles and Forces.” Scientific American, April 1981, pp. 48-63.
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Lecture Notes

from simple field theories to the standard model

by Richard C. Slansky

“Yhe standard model of electroweak and strong interactions
consists of two relativistic quantum field theories, one to
describe the strong interactions and one to describe the
electromagnetic and weak interactions. This model, which
incorporates all the known phenomenology of these fundamental
interactions, describes spinless, spin-2, and spin-1 fields interacting
with one another in a manner determined by its Lagrangian. The
theory is relativistically invariant, so the mathematical form of the
Lagrangian is unchanged by Lorentz transformations.

Although rather complicated in detail, the standard model La-
grangian is based on just two basic ideas beyond those necessary fora
quantum field theory. One is the concept of local symmetry, which is
encountered in its simplest form in electrodynamics. Local symmetry

determines the form of the interaction between particles, or fields,
that carry the charge associated with the symmetry (not necessarily
the electric charge). The interaction is mediated by a spin-1 particle,
the vector boson, or gauge particle. The second concept is spon-
taneous symmetry breaking, where the vacuum (the state with no
particles) has a nonzero charge distribution. In the standard model
the nonzero weak-interaction charge distribution of the vacuum is
the source of most masses of the particles in the theory. These two
basic ideas, local symmetry and spontaneous symmetry breaking, are
exhibited by simple field theories. We begin these lecture notes with a
Lagrangian for scalar fields and then, through the extensions and
generalizations indicated by the arrows in the diagram below, build
up the formalism needed to construct the standard model.

@
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Fields, Lagrangians,

and Equations
of Motion

We begin this introduction to field theory with one of the simplest
theories, a complex scalar field theory with independent fields ¢(x)
and ¢'(x). (¢'(x) is the complex conjugate of (x) if ¢(x) is a classical
field, and, if @(x) is generalized to a column vector or to a quantum
field, @f(x) is the Hermitian conjugate of ¢(x).) Since @(x) is a
complex function in classical field theory, it assigns a complex
number to each four-dimensional point x = (¢t, x) of time and space.
The symbol x denotes all four components. In quantum field theory
¢(x) is an operator that acts on a state vector in quantum-mechanical
Hilbert space by adding or removing elementary particles localized
around the space-time point X.

In this note we present the case in which ¢(x) and ¢'(x) correspond
respectively to a spinless charged particle and its antiparticle of equal
mass but opposite charge. The charge in this field theory is like
electric charge, except it is not yet coupled to the electromagnetic
field. (The word “charge” has a broader definition than just electric
charge.) In Note 3 we show how this complex scalar field theory can
describe a quite different particle spectrum: instead of a particle and
its antiparticle of equal mass, it can describe a particle of zero mass
and one of nonzero mass, each of which is its own antiparticle. Then
the scalar theory exhibits the phenomenon called spontaneous sym-
metry breaking, which is important for the standard model.

A complex scalar theory can be defined by the Lagrangian density,

L(9,3,0,0",8,0") = 3*¢'3,0 — m*oTo — MoT0)*, (la)

where d,¢ = dp/dx*. (Upper and lower indices are related by the
metric tensor, a technical point not central to this discussion.) The
Lagrangian itself is

hy
L(fl,tz)E fzzdt-f d3xf£. (]b)

The first term in Eq. la is the kinetic energy of the fields ¢(x) and
¢'(x), and the last two terms are the negative of the potential energy.
Terms quadratic in the fields, such as the —m?p'e term in Eq. la.
are called mass terms. If m?> 0, then ¢(x) describes a spinless
particle and ¢f(x) its antiparticle of identical mass. If m? <0, the
theory has spontaneous symmetry breaking.

The equations of motion are derived from Eq. 1 by a variational
method. Thus, let us change the fields and their derivatives by a small
amount 3¢(x) and 83,¢(x) = 4,8¢(x). Then,

o 9 0L 0L
6Lz,t=f — 8¢ + t+ —
(21,12) N [ 30 0] a—q')'f o) a(au¢)ap8¢
0P
+ 3,80 [ d'x, 2
FTER M ‘p] @)

where the variation is defined with the restrictions 8@(x,f;) = 8¢(x,t;)
=38p'(x,t;) =80 (x,t;) =0, and 8¢(x) and 8¢'(x) are independent. The
last two terms are integrated by parts, and the surface term is dropped
since the integrand vanishes on the boundary. This procedure yields
the Euler-Lagrange equations for (p'f(x),

a(aff)
*\9(0,0)

and for ¢(x). (The Euler-Lagrange equation for ¢(x) is like Eq. 3
except that ¢f replaces ¢. There are two equations because 8¢(x) and
5¢'(x) are independent.) Substituting the Lagrangian density, Eq. la,
into the Euler-Lagrange equations, we obtain the equations of mo-
tion,

%~0, 3)

#9,0 + m*o + 2M(o'p)e =0, @)
plus another equation of exactly the same form with ¢(x) and
o7(x) exchanged.

This method for finding the equations of motion can be easily
generalized to more fields and to fields with spin. For example, a field
theory that is incorporated into the standard model is elec-
trodynamics. Its list of fields includes particles that carry spin. The
electromagnetic vector potential 4,(x) describes a “vector” particle
with a spin of 1 (in units of the quantum of action A = 1.0546 X 107’
erg second), and its four spin components are enumerated by the
space-time vector index p (=0, 1, 2, 3, where 0 is the index for the
time component and 1, 2, and 3 are the indices for the three space
components). In electrodynamics only two of the four components of
Ay(x) are independent. The electron has a spin of 'z, as does its
antiparticle, the positron. Electrons and positrons of both spin pro-
jections, £'%, are described by a field y(x), which is a column vector
with four entries. Many calculations in electrodynamics are com-
plicated by the spins of the fields.

There is a much more difficult generalization of the Lagrangian
formalism: if there are constraints among the fields, the procedure
yielding the Euler-Lagrange equations must be modified, since the
field variations are not all independent. This technical problem
complicates the formulation of electrodynamics and the standard
model, especially when computing quantum corrections. Our ex-
amination of the theory is not so detailed as to require a solution of
the constraint problem.




Continuous
Symmetries

It is often possible to find sets of fields in the Lagrangian that can
be rearranged or transformed in ways described below without
changing the Lagrangian. The transformations that leave the La-
grangian unchanged (or invariant) are called symmetries. First, we
will look at the form of such transformations, and then we will
discuss implications of a symmetrical Lagrangian. In some cases
symmetries imply the existence of conserved currents (such as the
electromagnetic current) and conserved charges (such as the electric
charge), which remain constant during elementary-particle collisions.
The conservation of energy, momentum, angular momentum, and
electric charge are all derived from the existence of symmetries.

Let us consider a continuous linear transformation on three real
spinless fields @;(x) (Where i = 1, 2, 3) with @;(x) = ¢f(x). These three
fields might correspond to the three pion states. As a matter of
notation, ¢(x) is a column vector, where the top entry is @;(x), the
second entry is @y(x), and the bottom entry is ¢;(x). We write the
linear transformation of the three fields in terms of a 3-by-3 matrix
U(g), where

0'(x)= Uelo(x), (3a)
or in component notation
@(x") = U(e)p(x) . (5b)

The repeated index is summed from | to 3, and generalizations to

different numbers or kinds of fields are obvious. The parameter € is
continuous, and as € approaches zero, U(g) becomes the unit matrix.
The dependence of X’ on x and ¢ is discussed below. The continuous
transformation U(g) is called linear since ¢;(x) occurs linearly on the
right-hand side of Eq. 5. (Nonlinear transformations also have an
important role in particle physics, but this discussion of the standard
model will primarily involve linear transformations except for the
vector-boson fields, which have a slightly different transformation
law, described in Note 5.) For N independent transformations, there
will be a set of parameters €, where the index a takes on values from
lto M.

For these continuous transformations we can expand ¢’(x’) in a
Taylor series about g, = 0; by keeping only the leading term in the
expansion, Eq. 5 can be rewritten in infinitesimal form as

So(x) = @’(x) — @(x) = £°T,0(x) (6a)

o)

dg, (6b)

T, = ¢" [ ] o dxHa, ,

with 8x = x’ — x. The T, are the “generators” of the symmetry
transformations of ¢(x). (We note that 8¢(x) in Eq. 6a is a small
symmetry transformation, not to be confused with the field varia-
tions 8¢ in Eq. 2.)

The space-time point x’ is, in general, a function of x. In the case
where x’ = x, Eq. 5 is called an internal transformation. Although our
primary focus will be on internal transformations, space-time sym-
metries have many applications. For example, all theories we de-
scribe here have Poincaré symmetry, which means that these theories
are invariant under transformations in which x’ = Ax+ b, where A is
a 4-by-4 matrix representing a Lorentz transformation that acts on a
four-component column vector x consisting of time and the three
space components, and b is the four-component column vector of the
parameters of a space-time translation. A spinless field transforms
under Poincaré transformations as ¢’(x’) = ¢ (x) or 3¢ = —b"d,¢(x).
Upon solving Eq. 6b, we find the infinitesimal translation is repre-
sented by /d,. The components of fields with spin are rearranged by
Poincaré transformations according to a matrix that depends on both
the €’s and the spin of the field.

We now restrict attention to internal transformations where the
space-time point is unchanged; that is, dx" 0. If g, is an in-
finitesimal, arbitrary function of x, g,(x), then Eqs. 5 and 6a are called
local transformations. If the g, are restricted to being constants in
space-time, then the transformation is called global.

Before beginning a lengthy development of the symmetries of
various Lagrangians, we give examples in which each of these kinds
of linear transformations are, indeed, symmetries of physical the-
ories. An example of a global, internal symmetry is strong isospin, as
discussed briefly in “Particle Physics and the Standard Model.”
(Actually, strong isospin is not an exact symmetry of Nature, but it is
still a good example.) All theories we discuss here have global Lorentz
invariance, which is a space-time symmetry. Electrodynamics has a
local phase symmetry that is an internal symmetry. For a charged
spinless field the infinitesimal form of a local phase transformation is
3p(x) = ie(x)p(x) and 8¢T(x) = —ie(x)T(x), where @(x) is a complex
field. Larger sets of local internal symmetry transformations are
fundamental in the standard model of the weak and strong interac-
tions. Finally, Einstein’s gravity makes essential use of local space-
time Poincaré transformations. This complicated case is not dis-
cussed here. It is quite remarkable how many types of transforma-
tions like Egs. 5 and 6 are basic in the formulation of physical
theories.

Le? us return to the column vector of three real fields ¢(x) and
suppose we have a Lagrangian that is unchanged by Eqs. 5 and 6,
where we now restrict our attention to internal transformations. (One
such Lagrangian is Eq. la, where ¢(x) is now a column vector and
¢'(x) is its transpose.) Not only the Lagrangian, but the Lagrangian

where T, is the first term in the Taylor expansion, density, too, is unchanged by an internal symmetry transformation.
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Let us consider the infinitesimal transformation (Eq. 6a) and calcu-
late 8.2 in two different ways. First of all, % = 0 if 8¢ is a symmetry
identified from the Lagrangian. Moreover, according to the rules of
partial differentiation,

a:z-—s + L

FESNG M

3,00; .

Then, using the Euler-Lagrange equations (Eq. 3) for the first term
and collecting terms, Eq. 7 can be written in an interesting way:

¥
0L = d,| ——— | do; . 8
H(a(ap(p’)> P, ( )
The next step is to substitute Eq. 6a into Eq. 8. Thus, let us
define the current J{i(x) as
4
Jix) =ier— 36,90 TS, . %)

Then Eq. 8 plus the requirement that ¢ is a symmetry imply the
continuity equation,

M) = (10)
We can gain intuition about Eq. 10 from electrodynamics, since the
electromagnetic current satisfies a continuity equation. It says that
charge is neither created nor destroyed locally: the change in the
charge density, Jy(x), in a small region of space is just equal to the
current J(x) flowing out of the region. Equation 10 generalizes this
result of electrodynamics to other kinds of charges, and so J{(x) is
called a current. In particle physics with its many continuous sym-
metries, we must be careful to identify which current we are talking
about.

Although the analysis just performed is classical, the results are
usually correct in the quantum theory derived from a classical
Lagrangian. In some cases, however, quantum corrections contribute
a nonzero term to the right-hand side of Eq. 10; these terms are called
anomalies. For global symmetries these anomalies can improve the
predictions from Lagrangians that have too much symmetry when
compared with data because the anomaly wrecks the symmetry (it
was never there in the quantum theory, even though the classical
Lagrangian had the symmetry). However, for local symmetries
anomalies are disastrous. A quantum field theory is locally sym-
metric only if its currents satisfy the continuity equation, Eq. 10.
Otherwise local symmetry transformations simply change the theory.
(Some care is needed to avoid this kind of anomaly in the standard
model.) We now show that Eq. 10 can imply the existence of a
conserved quantity called the global charge and defined by

0% = [ d*x J§(x), (11)

provided the integral over all space in Eq. 11 is well defined; that is,

%(x) must fall off rapidly enough as |x| approaches infinity that the
integral is finite.
If Q%) is indeed a conserved quantity, then its value does not
change in time, which means that its first time derivative is zero. We
can compute the time derivative of Q%) with the aid of Eq. 10:

V-Jix)= [J*-dS=0.

aJ§(x)
a—"t = [d (12)

d
720 =&

The next to the last step is Gauss’s theorem, which changes the
volume integral of the divergence of a vector field into a surface
integral. If J%(x) falls off more rapidly than 1/}x|* as |x| becomes very
large, then the surface integral must be zero. It is not a always true
that J9%x) falls off so rapidly, but when it does, Q%) = Q% is a
constant in time. One of the most important experimental tests of a
Lagrangian is whether the conserved quantities it predicts are, in-
deed, conserved in elementary-particle interactions.

The Lagrangian for the complex scalar field defined by Eq. 1 has an
internal global symmetry, so let us practice the above steps and
identify the conserved current and charge. It is easily verified that the
global phase transformation

¢'(x) = e*p(x) (13)
leaves the Lagrangian density invariant. For example, the first term
of Eqg. 1 by itself is unchanged: 9,0'0%¢ becomes d,(e"oh)dH(e*¢)
= apqafa”(p, where the last equality follows only if € is constant in
space-time. (The case of local phase transformations is treated in
Note 5.) The next step is to write the infinitesimal form of Eq. 13 and
substitute it into Eq. 9. The conserved current is
Ju(x) = i[3,0Ne — 3,001, (14)
where the sum in Eq. 9 over the fields ¢(x) and o'(x) is written out
explicitly.

If m*>> 0in Eq. 1, then all the charge can be localized in space and
time and made to vanish as the distance from the charge goes to
infinity. The steps in Eq. 12 are then rigorous, and a conserved charge
exists. The calculation was done here for classical fields, but the same
results hold for quantum fields: the conservation law implied by Eq.
12 yields a conserved global charge equal to the number of @ particles
minus the number of ¢ antiparticles. This number must remain
constant in any interaction. (We will see in Note 3 that if m? <0, the
charge distribution 1s spread out over all space-time, so the global
charge is no longer conserved even though the continuity equation
remains valid.)

Identifying the transformations of the fields that leave the La-
grangian invariant not only-satisfies our sense of symmetry but also
leads to important predictions of the theory without solving the
equations of motion. In Note 4 we will return to the example of three
real scalar fields to introduce larger global symmetries, such as SU(2),
that interrelate different fields.
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Spontaneous
Breaking of a
Global Symmetry

It is possible for the vacuum or ground state of a physical system to
have less symmetry than the Lagrangian. This possibility is called
spontaneous symmetry breaking, and it plays an important role in
the standard model. The simplest example is the complex scalar field
theory of Eq. la with m*> < 0.

In order to identify the classical fields with particles in the quan-
tum theory, the classical field must approach zero as the number of
particles in the corresponding quantum-mechanical state approaches
zero. Thus the guantum-mechanical vacuum (the state with no
particles) corresponds to the classical solution ¢(x) =-0. This might
seem automatic, but it is not. Symmetry arguments do not
necessarily imply that @(x) = 0 is the lowest energy state of the
system. However, if we rewrite ¢(x) as a function of new fields that do
vanish for the lowest energy state, then the new fields may be directly
identified with particles. Although this prescription is simple, its
justification and analysis of its limitations require extensive use of
the details of quantum field theory.

The energy of the complex scalar theory is the sum of kinetic and
potential energies of the ¢(x) and q)*(x) fields, so the energy density is

(15)

with A > 0. Note that a“qﬁau(p is nonnegative and is zero if @ is a
constant. For ¢ = 0, .# = 0. However, if m? < 0, then there are
nonzero values of @(x) for which J# < 0. Thus, there is a nonzero
field configuration with lowest energy. A graph of .# as a function of
lo| is shown in Fig. 1. In this example % is at its lowest value when
both the kinetic and potential energies (¥ = m?@Tp + AM¢'p)?) are at
their lowest values. Thus, the vacuum solution for @(x) is found by
solving the equation dV/d@ = 0, or

H =i, + mPolo + Mole),

t N1
O'(x)p(x) = = = = 5o [*> 0. (16)

Next we find new fields that vanish when Eq. 16 is satisfied. For
example, we can set

o(x)= ;/l—i[p(x) + o] exp[im(x)/go] , (17)

where the real fields p(x) and n(x) are zero when the system is in the
lowest energy state. Thus p(x) and m(x) may be associated with
particles. Note, however, that ¢q is not completely specified; it may
lie at any point on the circle in field space defined by Eq. 16, as shown
in Fig. 2.

Suppose @ is real and given by
Qo= (—m*/M)'/*. (18)
Then the Lagrangian is still invariant under the phase transforma-
tions in Eq. 13, but the choice of the vacuum field solution is changed

g 1= /=mZ/2x

Fig. 1. The Hamiltonian # defined by Eq. 15 has minima at
nonzero values of the field o.
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Fig. 2. The closed curve is the location of the minimum of
V in the field space o.

by the phase transformation. Thus, the vacuum solution is not
invariant under the phase transformations, so the phase symmetry is
spontaneously broken. The symmetry of the Lagrangian is not a
symmetry of the vacuum. (For m? > 0 in Eq. 1, the vacuum and the
Lagrangian both have the phase symmetry.)

.58



article Physics-and the Standard Model

Fig. 3. A graphic representation of the last four terms of Eq.
20, the interaction terms. Solid lines denote the p field and
dotted lines the 7 field. The interaction of three p(x) fields at
a single point is shown as three solid lines emanating from a
single point. In perturbation theory this so-called vertex
represents the lowest order quantum-mechanical amplitude
for one particle to turn into two. All possible configurations
of these vertices represent the quantum-mechanical
amplitudes defined by the theory.

We now rewrite the Lagrangian in terms of the particle fields p(x)
and n(x) by substituting Eq. 17 into Eq. 1. The Lagrangian becomes

1 1
& =5 #pip + 5 (1 + p/goydndun

2

m A

_“2—(P+(Po)2—z(0+¢o)4- (19)
To estimate the masses associated with the particle fields p(x) and

ni(x), we substitute Eq. 18 for the constant ¢y and expand £ in powers

of the fields m(x) and p(x), obtaining

4

1 1 m A
z = 3 Mpa,p + 3 atra,m + i + m*p? — (—Am?)pd — Zp"

\ 1
+ —pd*ndm+ =— pZotmo,m. 20
PN T 5 5 P md,m (20)

This Lagrangian has the following features.
O The fields p(x) and n{x) have standard kinetic energy terms.

O Since m?<0, the term mzp2 can be interpreted as the mass term for
the p(x) field. The p(x) field thus describes a particle with mass-
squared equal to [m?|, not — |m?|.

O The 7(x) field has no mass term. (This is obvious from Fig. 2,
which shows that #(p,n) has no curvature (that is, 2L /an? =0) in
the n(x) direction.) Thus, n(x) corresponds to a massless particle.
This result is unchanged when all the quantum effects are in-
cluded.

O The phase symmetry is hidden in & when it is written in terms of
p(x) and n(x). Nevertheless, £ has phase symmetry, as is proved
by working backward from Eq. 20 to Eq. 16 to recover Eq. 1a.

© In theories without gravity, the constant term ¥ « m*/A can be
ignored, since a constant overall energy level is not measurable.
The situation is much more complicated for gravitational theories,
where terms of this type contribute to the vacuum energy-momen-
tum tensor and, by Einstein’s equations, modify the geometry of
space-time.

O The p field interacts with the = field only through derivatives of m.
The interaction terms in Eq. 20 may be pictured as in Fig. 3.

Although this model might appear to be an idle curiosity, it is an
example of a very general result known as Goldstone’s theorem. This
theorem states that in any field theory there is a zero-mass spinless
particle for each independent global continuous symmetry of the
Lagrangian that is spontancously broken. The zero-mass particle is
called a Goldstone boson. (This general result does not apply to local
symmetries, as we shall see.)

There has been one very important physical application of spon-
taneously broken global symmetries in particle physics, namely,
theories of pion dynamics. The pion has a surprisingly small mass
compared to a nucleon, so it might be understood as a zero-mass
particle resulting from spontaneous symmetry breaking of a global
symmetry. Since the pion mass is not exactly zero, there must also be
some small but explicit terms in the Lagrangian that violate the
global symmetry. The feature of pion dynamics that justifies this
procedure is that the interactions of pions with nucleons and other
pions are similar to the interactions (see Fig. 3) of the n(x) field with
the p(x) field and with itself in the Lagrangian of Eq. 20. Since the
pion has three (electric) charge states, it must be associated with a
larger global symmetry than the phase symmetry, one where three
independent symmetries are spontaneously broken. The usual choice
of symmetry is global SU(2) X SU(2) spontaneously broken to the
SU(2) of the strong-interaction isospin symmetry (see Note 4 for a
discussion of SU(2)). This description accounts reasonably well for
low-energy pion physics.

Perhaps we should note that only spinless fields can acquire a
vacuum value. Fields carrying spin are not invariant under Lorentz
transformations, so if they acquire a vacuum value, Lorentz in-
variance will be spontaneously broken, in disagreement with experi-
ment. Spinless particles trigger the spontaneous symmetry breaking
in the standard model.




Lagrangians with
Larger Global
Symmetries

In a theory with a single complex scalar field the phase transforma-
tion in Eq. 13 defines the “largest” possible internal symmetry since
the only possible symmetries must relate ¢(x) to itself. Here we will
discuss global symmetries that interrelate different fields and group
them together into “symmetry multiplets.” Strong isospin, an ap-
proximate symmetry of the observed strongly interacting particles, is
an example. It groups the neutron and the proton into an isospin
doublet, reflecting the fact that the neutron and proton have nearly
the same mass and share many similarities in the way that they
interact with other particles. Similar comments hold for the three
pion states (n*, n°, and n), which form an isospin triplet.

We will derive the structure of strong isospin symmetry by examin-
ing the invariance of a specific Lagrangian for the three real scalar
fields @;(x) already described in Note 2. (Although these fields could
describe the pions, the Lagrangian will be chosen for simplicity, not
for its capability to describe pion interactions.)

We are about to discover a symmetry by deriving it from a
Lagrangian; however, in particle physics the symmetries are often
discovered from phenomenology. Moreover, since there can be many
Lagrangians with the same symmetry, the predictions following from
the symmetry are viewed as more general than the predictions of a
specific Lagrangian with the symmetry. Consequently, it becomes
important to abstract from specific Lagrangians the general features
of a symmetry; see the comments later in this note.

A general linear transformation law for the three real fields can be
written

07 (x) = [exp(ie°T,)}9;(x) , 21

where the sum on j runs from [ to 3. One reason for choosing this
form of U(g) is that it explicitly approaches the identity as € ap-

proaches zero.
To identify the generators T, with matrix elements (7,);;, we use a
specific Lagrangian,

1

1
= 50'00,9: = 5 M09 = A (00" (22)

Let us place primes on the fields in Eq. 22 and substitute Eq. 21 into
it. Then .% written in terms of the new @(x) is exactly the same as Eq.
22if

[exp(ie®T,)]; [exp(ie?Ty) )ik = 8, (23)

where §;; are the matrix elements of the 3-by-3 identity matrix. (In
the notation of Eq. 5a, Eq. 23 is U(e)U”(g) = I.) Equation 23 can be
expanded in g, and the linear term then requires that 7, be an
antisymmetric matrix. Moreover, exp (i€?T,) must be a real matrix so
that @(x) remains real after the transformation. This implies that all
elements of the T, are imaginary. These constraints are solved by the
three imaginary antisymmetric 3-by-3 matrices with elements

(1) = —iay, 24)

where €123 = +1 and €4, is antisymmetric under the interchange of
any two indices (for example, g3;; = —1). (It is a coincidence in this
example that the number of fields is equal to the number of inde-
pendent symmetry generators. Also, the parameter g, with one index
should not be confused with the tensor €, with three indices.)

The conditions on U(g) imply that it is an orthogonal matrix; 3-
by-3 orthogonal matrices can also describe rotations in three spatial
dimensions. Thus, the three components of @; transform in the same
way under isospin rotation as a spatial vector x transforms under a
rotation. Since the rotational symmetry is SU(2), so is the isospin
symmetry. (Thus “isospin™ is like spin.) The 7, matrices satisfy the
SU(2) commutation relations '
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[Ta,Tb] = TaTh - TbTa = isathc . (25)

Although the explicit matrices of Eq. 24 satisfy this relation, the T,
can be generalized to be quantum-mechanical operators. In the
example of Eqs. 21 and 22, the isospin multiplet has three fields.
Drawing on angular momentum theory, we can learn other
possibilities for isospin multiplets. Spin-/ multiplets (or representa-
tions) have 2J + | components, where J can be any nonnegative
integer or half integer. Thus, multiplets with isospin of '2 have two
fields (for example, neutron and proton) and isospin-3/2 multiplets
have four fields (for example, the A**, AT, A% and A~ baryons of mass
~1232 GeV/c?).

The basic structure of all continuous symmetries of the standard
model is completely analogous to the example just developed. In fact,
part of the weak symmetry is called weak isospin, since it also has the
same mathematical structure as strong isospin and angular momen-
tum. Since there are many different applications to particle theory of
given symmetries, it is often useful to know about symmetries and
their multiplets. This mathematical endeavor is called group theory,
and the results of group theory are often helpful in recognizing
patterns in experimental data.

Continuous symmetries are defined by the algebraic properties of
their generators. Group transformations can always be written in the
form of Eq. 21. Thus, if Q, (@ = 1, ..., N) are the generators of a
symmetry, then they satisfy commutation relations analogous to Eq.
25:

[Qanb] = I:f(;hCQC » (26)

where the constants f,;. are called the structure constants of the Lie
algebra. The structure constants are determined by the multiplication
rules for the symmetry operations, U(g|)U(e;) = Ules), where €3
depends on g, and &,. Equation 26 is a basic relation in defining a Lie
algebra, and Eq. 21 is an example of a Lie group operation. The Q,,
which generate the symmetry, are determined by the “‘group” struc-
ture. The focus on the generators often simplifies the study of Lie
groups. The generators Q, are quantum-mechanical operators. The
(T,);;of Egs. 24 and 25 are matrix elements of 0, for some symmetry

multiplet of the symmetry.

The general problem of finding all the ways of constructing equa-
tions like Eq. 25 and Eq. 26 is the central problem of Lie-group
theory. First, one must find all sets of f;.. This is the problem of
finding all the Lie algebras and was solved many years ago. The
second problem is, given the Lie algebra, to find all the matrices that
represent the generators. This is the problem of finding all the
representations (or multiplets) of a Lie algebra and is also solved in
general, at least when the range of values of each g, is finite. Lie group
theory thus offers an orderly approach to the classification of a huge
number of theories.

Once a symmetry of the Lagrangian is identified, then sets of n
fields are assigned to n-dimensional representations of the symmetry
group, and the currents and charges are analyzed just as in Note 2.
For instance, in our example with three real scalar fields and the
Lagrangian of Eq. 22, the currents are

JH(x) =% (8,0)9; 27
and, if m? > 0, the global symmetry charge is
_3;
0= [ d gaua_“" o (28)
t

where the quantum-mechanical charges Q, satisfy the commutation
relations

[Qa vaJ = i€ Qe - (29

(The derivation of Eq. 29 from Eq. 28 requires the canonical com-
mutation relations of the quantum ¢ (x) fields.)

The three-parameter group SU(2) has just been presented in some
detail. Another group of great importance to the standard model is
SU(3), which is the group of 3-by-3 unitary matrices with unit
determinant. The inverse of a unitary matrix Uis Uf, so UTU =L
There are eight parameters and eight generators that satisfy Eq. 26
with the structure constants of SU(3). The low-dimensional represen-
tations of SU(3) have 1, 3, 6, 8, 10, ... fields, and the different
representations are referred to as 1, 3, 3, 6, 6, 8, 10, 10, and so on.




Local Phase
Invariance and
Electrodynamics

The theories that make up the standard model are all based on the
principle of local symmetry. The simplest example of a local sym-
metry is the extension of the global phase invariance discussed at the
end of Note 2 to local phase invariance. As we will derive below, the
requirement that a theory be invariant under local phase transforma-
tions implies the existence of a gauge field in the theory that mediates
or carries the “force” between the matter fields. For electrodynamics
the gauge field is the electromagnetic vector potential 4,(x) and its
quantum particle is the massless photon. In addition, in the standard
model the gauge fields mediating the strong interactions between the
quarks are the massless gluon fields and the gauge fields mediating
the weak interactions are the fields for the massive Z° and W™= weak
bosons.

To illustrate these principles we extend the global phase invariance
of the Lagrangian of Eq. | to a theory that has local phase invariance.
Thus, we require £ to have the same form for ¢’(x) and ¢(x), where
the local phase transformation is defined by

@'(x) = e®Vo(x) . (30)
The potential energy,
V(e,0") = m’oTo + MoTe), €2))

already has this symmetry, but the kinetic energy, a“q;’fa,,cp, clearly

does not, since

3,0’ (x) = € (3,0 + i(3,£)p] - (32)

Z does not have local phase invariance if the Lagrangian of the
transformed fields depends on &(x) or its derivatives. The way to
eliminate the d,& dependence is to add a new field 4,,(x) called the
gauge field and then require the local symmetry transformation law
for this new field to cancel the 9, term in Eq. 32. The gauge field can
be added by generalizing the derivative d,, to D,,, where
Dy =0, —iedy(x). (33)
This 1s just the minimal-coupling procedure of electrodynamics. We
can then make a kinetic energy term of the form (D“(p)T(Du(p) if we
require that

Dg’(x) = "D, p(x) . 34

When written cut with Eq. 33, Eq. 34 becomes an equation for 4/(x)
in terms of A4,(x), which is easily solved to give

AL(x) = A (x) + ;l du8(x) . (35)

Equation 35 prescribes how the gauge field transforms under the local
phase symmetry.

Thus the first step to modifying Eq. 1 to be a theory with local
phase invariance is simply to replace 4, by D, in #. (A slightly
generalized form of this trick is used in the construction of all the
theories in the standard model.) With this procedure the dominant
interaction of the gauge field 4*(x) with the matter field ¢ is in the
form of a current times the gauge field, e/*4,,, where J,, is the current
defined in Eq. 14.

Spontaneous
Breaking of Local
Phase Invariance

We now show that spontaneous breaking of local symmetry im-
plies that the associated vector boson has a mass, in spite of the fact
that 4*A, by itself is not locally phase invariant. Much of the
calculation in Note 3 can be translated to the Lagrangian of Eq. 38. In
fact, the calculation is identical from Eq. 16 to Eq. 18, so the first new
step is to substitute Eq. 17 into Eq. 38. The only significantly new part

of the calculation is replacing a”(p'fap(p by (D“(p)T(D,‘(p). However,
instecad of simply substituting Eq. 17 for ¢ and computing
(D”(p)T(Du(p) directly, it is convenient to make a local phase trans-
formation first:

o) = 712—[p(x) + o] explin(x)/0q] (a1)

where @(x) = [p(x) + @]/ /2. (The local phase invariance permits us
to remove the phase of ¢(x) at every space-time point.) We
emphasize the difference between Eqs. 17 and 41: Eq. 17 defines the
p(x) and n(x) fields; Eq. 41 is a local phase transformation of ¢(x) by
angle n(x). Don’t be fooled by the formal similarity of the two
equations. Thus, we may write Eq. 38 in terms of ¢(x)=[p(x) +
©0)/ V2 and obtain )
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This leaves a problem. If we simply replace 3,9 by D,¢ in the
Lagrangian and then derive the equations of motion for 4,, we find
that A, is proportional to the current J,.. The A, field equation has no
space-time derivatives and therefore 4,(x) does not propagate. If we
want A, to correspond to the electromagnetic field potential, we must
add a kinetic energy term for it to &.

The problem then is to find a locally phase invariant kinetic energy
term for 4,(x). Note that the combination of covariant derivatives
D,D,— D,D,, when acting on any function, contains no derivatives
of the function. We define the electromagnetic field tensor of elec-
trodynamics as

i
FHVEE[DH’D\/}=6MA\’_8VAH- (36)

It contains derivatives of A,. Its transformation law under the local
symmetry is
Fiy=F,. (37
Thus, it is completely trivial to write down a term that is quadratic in

the derivatives of A, which would be an appropriate kinetic energy
term. A fully phase invariant generalization of Eq. la is

1
& == 7 FFy+ (D) (D) — m’¢T0 — M(oT0)’. (38)

We should emphasize that & has no mass term for 4,,(x). Thus, when
the fields correspond directly to the particles in Eq. 38, the vector
particles described by A,(x) are massless. In fact, 4"4, is not in-
variant under the gauge transformation in Eq. 35, so it is not obvious
how the A, field can acquire a mass if the theory does have local
phase invariance. In Note 6 we will show how the gauge field
becomes massive through spontaneous symmetry breaking. This is

the key to understanding the electroweak theory.

We now rediscover the Lagrangian of electrodynamics for the
interaction of electrons and photons following the same procedure
that we used for the complex scalar field. We begin with the kinetic
energy term for a Dirac field of the electron y, replace 9, by D,
defined in Eq. 33, and then add — "4F"F,,,, where F*" is defined in
Eq. 36. The Lagrangian for a free Dirac field is

’TDirac = q’(lY“au - m)\l! > (39)

where y* are the four Dirac y matrices and w = y'y,. Straightening out
the definition of the y* matrices and the components of y is the
problem of describing a spin-Y2 particle in a theory with Lorentz
invariance. We leave the details of the Dirac theory to textbooks, but
note that we will use some of these details when we finally write down
the interactions of the quarks and leptons. The interaction of the
electron field y with the electromagnetic field follows by replacing d,
by D,. The electrodynamic Lagrangian is

1 -
Y =-— 7 PYE iy Dy — my, (40a)
where the interaction term in /iyy* D,y has the form
L interaction = e\l}Yu\l’A“ = eJﬁmA“ s (4Ob)

where Ji™= yy,¥ is the electromagnetic current of the electron.
What is amazing about the standard model is that all the electroweak
and strong interactions between fermions and vector bosons are
similar in form to Eq. 40b, and much phenomenology can be
understood in terms of such interaction terms as long as we can
approximate the quantum fields with the classical solutions.

1 1 e?
£ == F"Fu+ 5 #pdup + 5 (p + o)’4*4,

2
— 2 ot g0 =5 o+ o) )

(At the expense of a little algebra, the calculation can be done the
other way. First substitute Eq. 17 for ¢ in Eq. 38. One then finds an
A3, m term in & that can be removed using the local phase trans-
formation A, = A, — [1/(e@o)]dyw, p’ = p, and n’ = 0. Equation 42
then follows, although this method requires some effort. Thus, a
reason for doing the calculation in the order of Eq. 41 is that the
algebra gets messy rather quickly if the local symmetry is not used
early in the calculation of the electroweak case. However, in principle
it makes little difference.)

The Lagrangian in Eq. 42 is an amazing result: the = field has

vanished from & altogether (according to Eq. 41, it was simply a
gauge artifact), and there is a term Y2e%p3 A¥4, in £, which is a mass
term for the vector particle. Thus, the massless particle of the global
case has become the longitudinal mode of a massive vector particle,
and there is only one scalar particle p left in the theory. In somewhat
more picturesque language the vector boson has eaten the Goldstone
boson and become heavy from the feast. However, the existence of
the vector boson mass terms should not be understood in isolation:
the phase invariance of Eq. 42 determines the form of the interaction
of the massive A, field with the p field.

This calculation makes it clear that it can be tricky to derive the
spectrum of a theory with local symmetry and spontancous sym-
metry breaking. Theoretical physicists have taken great care to
confirm that this interpretation is correct and that it generalizes to the
full guantum field theory.




Yang-Mills
Theories

The standard model possesses symmetries of the type described in
Note 4, except that they are local. Thus, we need to carry out the
calculations of Note 5 for Lie-group symmetries. As the reader might
expect, this requires replacing €(x) of Eq. 13 by a matrix or, equiv-
alently, the matrix of Eq. 21 by a matrix function of x, €%(x)T,. The
Yang-Mills Lagrangian can be derived by mimicking with matrix
functions Eqgs. 34 to 38.

The internal, local transformation of the ¢ field (¢ is a column
vector with components ¢;, where / runs from 1 to n) is
o’ (x) = " Mo(x), (43)
which is formally identical to Eq. 30, except that £(x) is now an n-by-n
matrix. Thus,

&(x) =e%(x)T,, (44)
where the sum on a is over the N independent symmetries. Equation
43 is a symmetry of the potential energy
V=lo'e + Mo'e), (45)
if €(x) in Eq. 44 is a Hermitian matrix (that is, if 7, = T} and the £4(x)
are real functions). The kinetic energy (8“(p)7(6“(p) can be made phase
invariant by extending d, to D,, analogous to Eq. 33 for electro-
dynamics:

D, = 3, —ied,, (46a)
where
A= AT, (46b)

so that A4, is an n-by-n matrix that acts on the ¢ vector. Just as for Eq.
35, the transformation properties of A, are derived from the equation

D)o’ (x) = ™ D,o(x) . 47)

After some matrix manipulation one finds the solution of Eq. 47 for
Aj(x) in terms of A,(x) to be

_ . 1
A(x) = € A, — = G,6(0), (48)

where ¢7%%) is the inverse of the matrix e . With these require-
ments, it is easily seen that (D“(p)*(Dp(p) is invariant under the group
of local transformations.

The calculation of the field tensor is formally identical to Eq. 36,
except we must take into account that A,(x) is a matrix. Thus, we
define a matrix F,, field tensor as

Fyy =~ [Dy .D,|= dudy — 3.4, — le[Ay ,A,] . (49)

)
e

There is a field tensor for each group generator, and some further
matrix manipulation plus Eq. 26 gives the components,

Fo, = 3,4%— 3,42+ ef " Ap A, . (50)
The transformation law for the matrix F,, is
Fly= £#x) Foy P ON 31

Thus, we can write down a kinetic energy term in analogy to
electrodynamics:

1

Princtic energy = 2 FLFYY. (52)

The locally invariant Yang-Mills Lagrangian for spinless fields cou-
pled to the vector bosons is

@ == 4 FLFr+ (D) (D0~ welo =A@l (5)

Just as in electrodynamics, we can add fermions to the theory in
the form

P fermion = ‘I’(IYHDM - m)\ll 5 (54)

where D, is defined in Eq. 46 and y is a column vector with ngentries
(n; = number of fermions). The matrices 7, in D, for the fermion
covariant derivative are usually different from the matrices for the
spinless fields, since there is no requirement that ¢ and y need to
belong to the same representation of the group. It is, of course,
necessary for the sets of 7, matrices to satisfy the commutation
relations of Eq. 26 with the same set of structure constants.

We will not look at the general case of spontaneous symmetry
breaking in a Yang-Mills theory, which is a messy problem
mathematically. There is spontaneous symmetry breaking in the
electroweak sector of the standard model, and we will work out the
steps analogous to Eqs. 41 and 42 for this particular case in the next
Note.
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The SU(2) X U(1)
Electroweak
Model

The main emphasis in these Notes has been on developing just
those aspects of Lagrangian field theory that are needed for the
standard model. We have now come to the crucial step: finding a
Lagrangian that describes the electroweak interactions. It is rather
difficult to be systematic. The historical approach would be com-
plicated by the rather late discovery of the weak neutral currents, and
a purely phenomenological development is not yet totally logical
because there are important aspects of the standard model! that have
not yet been tested experimentally. (The most important of these are
the details of the spontaneous symmetry breaking.) Although we will
write down the answer without excessive explanation, the reader
should not forget the critical role that experimental data played in the
development of the theory.

The first problem is to identify the local symmetry group. Before
the standard model was proposed over twenty years ago, the elec-
tromagnetic and charge-changing weak interactions were known. The
smallest continuous group that can describe these is SU(2), which has
a doublet representation. If the weak interactions can change elec-
trons to electron neutrinos, which are electrically neutral, it is not
possible to incorporate electrodynamics in SU(2) alone unless a
heavy positively charged electron is added to the electron and its
neutrino to make a triplet, because the sum of charges in an SU(2)
multiplet is zero. Various schemes of this sort have been tried but do
not agree with experiment. The only way to leave the electron and
electron neutrino in a doublet and include electrodynamics is to add
an extra U(1) interaction to the theory. The hypothesis of the extra
U(!) factor was challenged many times until the discovery of the
weak neutral current. That discovery established that the local sym-
metry of the electroweak theory had to be at least as large as SU(2) X
u(1).

Let us now interpret the physical meaning of the four generators of
SU(2) X U(1). The three generators of the SU(2) group are 1%, I,
and /7, and the generator of the U(1) group is called Y, the weak
hypercharge. (The weak SU(2) and U(1) groups are distinguished
from other SU(2) and U(1) groups by the label “W.”) I'* and I~ are
associated with the weak charge-changing currents (the general def-
inition of a current is described in Note 2), and the charge-changing
currents couple to the W and W™ charged weak vector bosons in
analogy to Eq. 40b. Both /5 and Y are related to the electromagnetic
current and the weak neutral current. In order to assign the electron
and its neutrino to an SU(2) doublet, the electric charge Q°™ is
defined by

N
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Qm=5L+Y/2, (55)

so the sum of electric charges in an n-dimensional multiplet is nY/2.
The charge of the weak neutral current is a different combination of
I;and Y, as will be described below.

The Lagrangian includes many pieces. The kinetic energies of the
vector bosons are described by #y., in analogy to the first term in
Eq. 38. The three weak bosons have masses acquired through spon-
taneous symmetry breaking, so we need to add a scalar piece £ scatar t0
the Lagrangian in order to describe the observed symmetry breaking
(also see Eq. 38). The fermion kinetic energy L fmion includes the
fermion-boson interactions, analogous to the electromagnetic inter-
actions derived in Egs. 39 and 40. Finally, we can add terms that
couple the scalars with the fermions in a term %y, kawa- One physical
significance of the Yukawa terms is that they provide for masses of
the quarks and charged leptons.

The standard model is then a theory with a very long Lagrangian
with many fields. The electroweak Lagrangian has the terms

L etecrroweak = Ly-M T L scatar T Lrermion T L vukawa - (56)

(The reader may find this construction to be ad hoc and ugly. If so,
the motivation will be clear for searching for a more unified theory
from which this Lagrangian can be derived. However, it is important
to remember that, at present, the standard model is the pinnacle of
success in theoretical physics and describes a broader range of natural
phenomena than any theory ever has.)

The Yang-Mills kinetic energy term has the form given by Eq. 52
for the SU(2) bosons, plus a term for the U(1) field tensor similar to
electrodynamics (Egs. 36 and 38).

Lym=— Zl FUFa, — Zl FWF,,, (57)
where the U(1) field tensor is

Fow=09,B,—d4.,B, (58)
and the SU(2) Yang-Mills field tensor is

Fiv =0, W{— o, Wi+ geup whwe, (59)

where the g4, are the structure constants for SU(2) defined in Eq. 24
and the W} are the Yang-Mills fields.




continued

SU(2) X U(1) has two factors, and there is an independent coupling
constant for each factor. The coupling for the SU(2) factor is called g,
and it has become conventional to call the U(1) coupling g’/2. The
two couplings can be written in several ways. The U(1) of elec-
trodynamics is generated by a linear combination of /3 and Y, and the
coupling is, as usual, denoted by e. The other coupling can then be
parameterized by an angle 6. The relations among g, ¢’, e, and Bw
are

e=gg/ V£+? 2:',and ‘tan By = g’/ . (60)

These definitions will be motivated shortly. In the electroweak theory
both couplings must be evaluated experimentally and cannot be
calculated in the standard model.

The scalar Lagrangian requires a choice of representation for the
scalar fields. The choice requires that the field with a nonzero
vacuum value is electrically neutral, so the photon remains massless,
but it must carry nonzero values of /3 and Y so that the weak neutral
boson (the Zﬁ) acquires a mass from spontaneous symmetry break-
ing. The simplest assignment is

(p+
(P=<(po> and ¢'= (=0~ (¢""), (61)

where " has I;="2and Y=1, and ¢° has l3;=—% and Y= 1. Since
¢ does not have Y = —1 fields, it is necessary to make ¢ a complex
doublet, so (9*)f =—¢ has/;=—" and Y=—1, and (¢°)' has I; =",
and Y = —1. Then we can write down the Lagrangian of the scalar
fields as

-'([scalar = (D“(P)T(Du(P) _’nz(Pt(P_k((PT‘P)Z > (62)
where
Dup =00~ i 5 Bup — iSc, Wip (63)

is the covariant derivative. The 2-by-2 matrices 1, are the Pauli
matrices. The factor of Y is required because the doublet represen-
tation of the SU(2) generators is 1,/2. The factor of 2 in the B, term
is due to the convention that the U(l) coupling is g’/2 and the
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assignment that the ¢ doublet has Y = 1. After the spontaneous
symmetry breaking, three of the four scalar degrees of freedom are
“eaten” by the weak bosons. Thus just one scalar escapes the feast
and should be observable as an independent neutral particle, called
the Higgs particle. It has not yet been observed experimentally, and it
is perhaps the most important particle in the standard model that
does not yet have a firm phenomenological basis. (The minimum
number of scalar fields in the standard model is four. Experimental
data could eventually require more.)

We now carry out the calculation for the spontaneous symmetry
breaking of SU(2) X U(1) down to the U(1) of electrodynamics. Just
as in the example worked out in Note 6, spontaneous symmetry
breaking occurs when m? < 0 in Eq. 62. In contrast to the simpler
case, it is rather important to set up the problem in a clever way to
avoid an inordinate amount of computation. As in Eq. 41, we write
the four degrees of freedom in the complex scalar doublet so that it
looks like a local symmetry transformation times a simple form of the
field:

@(x) = exp|in®(x)1,/2¢0) ([p o) +?Po] N ) . (64)

We can then write the scalar fields in a new gauge where the phases of
©{(x) are removed:

o) = exp [0l = (o oz )s 6

where we have used the freedom of making local symmetry trans-
formations to write ¢’(x) in a very simple form. This choice, called
the unitary gauge, will make it easy to write out Eq. 63 in explicit
matrix form. Let us drop all primes on the fields in the unitary gauge
and redefine W] by the equation

_( Wi

~(vaws

Wi—iw}
— Wﬁ

ﬁW:)’

_.Wa
(66)

where the definition of the Pauli matrices is used in the first step, and
the W fields are defined in the second step with a numerical factor
that guarantees the correct normalization of the kinetic energy of the
charged weak vector bosons.

Next, we write out the D, ¢ in explicit matrix form, using Egs. 63,
65, and 66:

D=

—i +
iV2gWii(p + 90)/2 ) . 7)

1
NG (app — i(g’By — gWp + 90)/2
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Finally, we substitute Eqs. 65 and 67 into Eq. 62 and obtain

1
3 3"pdyp

510y,

Leaar = 5 WE W:(p + (PO)Z +

1
+ 3 (@B —gWH)(g'By — gWip + o)’

2 A
+ 2 (p+ 00l + 5 0+ 00, (68)

where p is the, as yet, unobserved Higgs field.

It is clear from Eq. 68 that the W fields will acquire a mass equal to
gpo/2 from the term quadratic in the W fields, (g2/4)pdWEW .
The combination g’B, — gWE1 will also have a mass. Thus, we
“rotate” the B, and W} fields to the fields Z? for the weak neutral
boson and A, for the photon so that the photon is massless.

Zy\ _(sinbw  —cosBw) [ B,
<Au>_(0059w sin By )(Wﬁ) (69)
where
cos Ow =g/ Vg + g2 and sin Oy = g’/ Vg +g'? . (70)

Upon substituting Eqgs. 69 and 70 into Eq. 68, we find that the Zﬂ
mass is 2 ¢p Vg* + g%, so the ratio of the W and Z masses is

Mw/MZ=Cosew. (71)

Values for My, and M have recently been measured at the CERN
proton-antiproton collider: My = (80.8 %+ 2.7) GeV/c? and M =
(92.9 + 1.6) GeV/c%. The ratio My,/M calculated with these values
agrees well with that given by Eq. 71. (The angle Oy is usually
expressed as sin’Bw and is measured in neutrino-scattering experi-
ments to be sin’Qy = 0.224 * 0.015.) The photon field A, does not
appear in L, S0 it does not become massive from spontaneous
symmetry breaking. Note, also, that the n%(x) fields appear nowhere
in the Lagrangian; they have been eaten by three weak vector bosons,
which have become massive from the feast.

The next term in Eq. 56 is L grmion. Its form is analogous to Egs. 39
and 40 for electrodynamics:

~([fermion = I\I"Y“Dp\l’ . (72)

The physical problem is to assign the left- and right-handed fermions
" to multiplets of SU(2); the assignments rely heavily on experimental
data and are listed in “Particle Physics and the Standard Model.”

Our purpose here will be to write out Eq. 72 explicitly for the
assignments.

Consider the electron and its neutrino. (The quark and remaining
lepton contributions can be worked out in a similar fashion.) The left-
handed components are assigned to a doublet and the right-handed
components are singlets. (Since a neutral singlet has no weak charge,
the right-handed component of the neutrino is invisible to weak,
electromagnetic, or strong interactions. Thus, we can neglect it here,
whether or not it actually exists.) We adopt the notation

we=(pr) amd we=ce). 73
L

where L and R denote left- and right-handed. Then the explicit
statement of Eq. 72 requires constructing D, for the left- and right-
handed leptons.

glepton = iq/RY“(ap + ig’Bu)\VR

- i
+ iy Yo, + 3 (gBy— gt WL . (74)

The weak hypercharge of the right-handed electron is —2 so the
coefficient of B, in the first term of Eq. 74 is (—g’/2) X (=2) =g’. We
leave it to the reader to check the rest of Eq. 74. The absence of a mass
term is not an error. Mass terms are of the form yy = y yg + WrwL.
Since y_ is a doublet and Yy is a singlet, an electron mass term must
violate the SU(2) X U(1) symmetry. We will see later that the electron
mass will reappear as a result of modification of Lyyawa due to
spontaneous symmetry breaking.

The next task is exciting, because it will reveal how the vector
bosons interact with the leptons. The calculation begins with Eq. 74
and requires the substitution of explicit matrices for 1, W}, yg, and
yi. We use the definitions in Eqgs. 66, 69, and 73. The expressions
become quite long, but the calculation is very straightforward. After
simplifying some expressions, we find that Zjep0n for the electron
lepton and its neutrino is

Lrepron = i€Y*d, 0 + iV yHI, v — e eyhed,
+ L Qe Wi+ aytv i)

V2 LyreLh LY VLW

__ &
2\/g2+g12

1 _
-3 Vg2 + g2 vz, .

[tan?Ow (2ery"er + eLy el) — evyteL]Z,
(75)
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The first two terms are the kinetic energies of the electron and the
neutrino. (Note that ¢ = e + er.) The third term is the elec-
tromagnetic interaction (cf. Eq. 40) with electrons of charge —e,
where e is defined in Eq. 60. The coupling of A, to the electron current
does not distinguish left from right, so electrodynamics does not
violate parity. The fourth term is the interaction of the W* bosons
with the weak charged current of the neutrinos and electrons. Note
that these bosons are blind to right-handed electrons. This is the
reason for maximal parity violation in beta decay. The final terms
predict how the weak neutral current of the electron and that of the
neutrino couple to the neutral weak vector boson Z°.

If the left- and right-handed electron spinors are written out
explicitly, with ep. = ¥2(1 — vs)e, the interaction of the weak neutral
current of the electron with the Z° is proportional to ey¥[(1 —
4sin’0y) — ¥sleZ,. This prediction provided a crucial test of the
standard model. Recall from Eq. 71 that sin’8y is very nearly %, so
that the weak neutral current of the electron is very nearly a purely
axial current, that is, a current of the form ey*yse. This crucial
prediction was tested in deep inelastic scattering of polarized elec-
trons and in atomic parity-violation experiments. The results of these
experiments went a long way toward establishing the standard model.
The tests also ruled out models quite similar to the standard model.
We could discuss many more tests and predictions of the model
based on the form of the weak currents, but this would greatly
lengthen our discussion. The electroweak currents of the quarks will
be described in the next section.

We now discuss the last term in Eq. 56, Lyuawa. In a locally
symmetric theory with scalars, spinors, and vectors, the interactions
between vectors and scalars, vector and spinors, and vectors and
vectors are determined from the local invariance by replacing 4, by
Dy. In contrast, L vkawa» Which is the interaction between the scalars
and spinors, has the same form for both local and global symmetries:

gYukawa = GY\D‘P\V

= Gy(yLoyr + YrOTyL) . (76)

This form for Ly xawa is rather schematic; to make it explicit we must

specify the multiplets and then arrange the component fields so that
the form of Ly kawa does not change under a local symmetry trans-
formation.

Let us write Eq. 76 explicitly for the part of the standard model we
have examined so far: ¢ is a complex doublet of scalar fields that has
the form in the unitary gauge given by Eq. 65. The fermions include
the electron and its neutrino. If the neutrino has no right-handed
component, then it is not possible to insert it into Eq. 76. Since the
neutrino has no mass term in %cpi0n, the neutrino remains massless
in this theory. (If vg is included, then the neutrino mass is a free
parameter.) The Yukawa terms for the electron are

Lyokawa = GY[(\_/Ls Z’L)((p " (p?;)/\/f) (er)

- VL
+ (er) (0, (p + @o)/ \ﬁ)( eL )]

|

= 72 Gyee(p+ @), (77)

where we have used the fact that e e, = ereg =0, and e= ¢, + ey is
the electron Dirac spinor. Note that Eq. 77 includes an electron mass
term,

1

7 Gygo, (78)

m,=

so the electron mass is proportional to the vacuum value of the scalar
field. The Yukawa coupling is a free parameter, but we can use the
measured electron mass to evaluate it. Recall that

M= g1Gev,
2 2 sin By

where e*/4n = 1/137. This implies that ¢y = 251 GeV. Since n, =
0.000511 GeV, Gy = 2.8 X 107 for the electron. There are more than
five Yukawa couplings, including those for the p and t leptons and
the three quark doublets as well as terms that mix different quarks of
the same electric charge. The standard model in no way determines
the values of these Yukawa coupling constants. Thus, the study of
fermion masses may turn out to have important hints on how to
extend the standard model.
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Quarks

Discovery of the fundamental fields of the strong interactions was
not straightforward. It took some years to realize that the hadrons,
such as the nucleons and mesons, are made up of subnuclear constit-
uents, primarily quarks. Quarks originated from an effort to provide
a simple physical picture of the “Eightfold Way,” which is the SU(3)
symmetry proposed by M. Gell-Mann and Y. Ne’eman to generalize
strong isotopic spin. The hadrons could not be classified by the
fundamental three-dimensional representations of this SU(3) but
instead are assigned to eight- and ten-dimensional representations.
These larger representations can be interpreted as products of the
three-dimensional representations, which suggested to Gell-Mann
and G. Zweig that hadrons are composed of constituents that are
assigned to the three-dimensional representations: the u (up), d
(down), and s (strange) quarks. At the time of their conception, it was
not clear whether quarks were a physical reality or a mathematical
trick for simplifying the analysis of the Eightfold-Way SU(3). The
major breakthrough in the development of the present theory of
strong interactions came with the realization that, in addition to
electroweak and Eightfold-Way quantum numbers, quarks carry a
new quantum number, referred to as color. This quantum number
has yet to be observed experimentally.

We begin this lecture with a description of the Lagrangian of a
" strong-interaction theory of quarks formulated in terms of their color
quantum numbers. Called quantum chromodynamics, or QCD, it is
a Yang-Mills theory with local color-SU(3) symmetry in which each
quark belongs to a three-dimensional color multiplet. The eight
color-SU(3) generators commute with the electroweak SU(2) X U(1)
generators, and they also commute with the generators of the Eight-
fold Way, which is a different SU(3). (Like SU(2), SU(3) is a recurring
symmetry in physics, so its various roles need to be distinguished.
Hence we need the label “color.”) We conclude with a discussion of
the weak interactions of the quarks.

The QCD Lagrangian. The interactions among the quarks are
mediated by eight massless vector bosons (called gluons) that are
required to make the SU(3) symmetry local. As we have already seen,

the assumption of local symmetry leads to a Lagrangian whose form
is highly restricted. As far as we know, only the quark and gluon fields
are necessary to describe the strong interactions, and so the most
general Lagrangian is

1 - _
Locp=— Z Fo PR + Xy Dyy; + LyiM oy, (79)
i L)
where
F&,=0,4% — 0,48 + g func ALAS . (80)

The sum on a in the first term is over the eight gluon fields A47. The
second term represents the coupling of each gluon field to an SU(3)
current of the quark fields, called a color current. This term is
summed over the index /, which labels each quark type and is
independent of color. Since each quark field y; is a three-dimensional
column vector in color space, D, is defined by

D= 04— 5 gAY, (81)
where 4, is a generalization of the three 2-by-2 Pauli matrices of
SU(2) to the eight 3-by-3 Gell-Mann matrices of SU(3), and g is the
QCD coupling. Thus, the color current of each quark has the form
YA v*y. The left-handed quark fields couple to the gluons with
exactly the same strength as the right-handed quark fields, so parity is
conserved in the strong interactions.

The gluons are massless because the QCD Lagrangian has no
spinless fields and therefore no obvious possibility of spontaneous
symmetry breaking. Of course, if motivated for experimental
reasons, one can add scalars to the QCD Lagrangian and spon-
taneously break SU(3) to a smaller group. This modification has been
used, for example, to explain the reported observation of fractionally
charged particles. The experimental situation, however, still remains
murky, so it is not (yet) necessary to spontaneously break SU(3) to a
smaller group. For the remainder of the discussion, we assume that
QCD is not spontaneously broken.

The third term in Eq. 79 is a mass term. In contrast to the
electroweak theory, this mass term is now allowed, even in the
absence of spontaneous symmetry breaking, because the left- and
right-handed quarks are assigned to the same multiplet of SU(3). The
numerical coefficients Mj; are the elements of the quark mass matrix;
they can connect quarks of equal electric charge. The ZLqcp of Eq. 79
permits us to redefine the QCD quark fields so that M;; = m;;. The
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mass matrix is then diagonal and each quark has a definite mass,
which is an eigenvalue of the mass matrix. We will reappraise this
situation below when we describe the weak currents of the quarks.

After successfully extracting detailed predictions of the electro-
weak theory from its complicated-looking Lagrangian, we might be
expected to perform a similar feat for the #cp of Eq. 79 without too
much difficulty. This is not possible. Analysis of the electroweak
theory was so simple because the couplings g and g’ are always small,
regardless of the energy scale at which they are measured, so that a
classical analysis is a good first approximation to the theory. The
quantum corrections to the results in Note 8 are, for most processes,
only a few percent.

In QCD processes that probe the short-distance structure of
hadrons, the quarks inside the hadrons interact weakly, and here the
classical analysis is again a good first approximation because the
coupling g, is small. However, for Yang-Mills theories in general, the
renormalization group equations of quantum field theory require
that g increases as the momentum transfer decreases until the
momentum transfer equals the masses of the vector bosons. Lacking
spontancous symmetry breaking to give the gluons mass, QCD
contains no mechanism to stop the growth of g, and the quantum
effects become more and more dominant at larger and larger dis-
tances. Thus, analysis of the long-distance behavior of QCD, which
includes deriving the hadron spectrum, requires solving the full
quantum theory implied by Eq. 79. This analysis is proving to be very
difficult.

Even without the solution of Zqcp, we can, however, draw some
conclusions. The quark fields y; in Eq. 79 must be determined by
experiment. The Eightfold Way has already provided three of the
quarks, and phenomenological analyses determine their masses (as
they appear in the QCD Lagrangian). The mass of the u quark is
nearly zero (a few MeV/c?), the d quark is a few MeV/c? heavier than
the u, and the mass of the s quark is around 300 MeV/c?. If these
results are substituted into Eq. 79, we can derive a beautiful result
from the QCD Lagrangian. In the limit that the quark mass dif-
ferences can be ignored, Eq. 79 has a global SU(3) symmetry that is
identical to the Eightfold-Way SU(3) symmetry. Moreover, in the
limit that the u, d, and s masses can be ignored, the left-handed u, d,

and s quarks can be transformed by one SU(3) and the right-handed
u, d, and s quarks by an independent SU(3). Then QCD has the
*“chiral” SU(3) X SU(3) symmetry that is the basis of current algebra.
The sums of the corresponding SU(3) generators of chiral SU(3) X
SU(3) generate the Eightfold-Way SU(3). Thus, the QCD Lagrangian
incorporates in a very simple manner the symmetry results of
hadronic physics of the 1960s. The more recently discovered ¢
(charmed) and b (bottom) quarks and the conjectured 7 (top) quark
are easily added to the QCD Lagrangian. Their masses are so large
and so different from one another that the SU(3) and SU(3) X SU(3)
symmetries of the Eightfold-Way and current algebra cannot be
extended to larger symmetries. (The predictions of, say, SU(4) and
chiral SU(4) X SU(4) do not agree well with experiment.)

It is important to note that the quark masses are undetermined
parameters in the QCD Lagrangian and therefore must be derived
from some more complete theory or indicated phenomenologically.
The Yukawa couplings in the electroweak Lagrangian are also free
parameters. Thus, we are forced to conclude that the standard model
alone provides no constraints on the quark masses, so they must be
obtained from experimental data.

The mass term in the QCD Lagrangian (Eq. 79) has led to new
insights about the neutron-proton mass difference. Recall that the
quark content of a neutron is udd and that of a proton is uud. If the u
and d quarks had the same mass, then we would expect the proton to
be more massive than the neutron because of the electromagnetic
energy stored in the uu system. (Many researchers have confirmed
this result.) Since the masses of the u# and d quarks are arbitrary in
both the QCD and the electroweak Lagrangians, they can be adjusted
phenomenologically to account for the fact that the neutron mass is
1.293 MeV/c? greater than the proton mass. This experimental
constraint is satisfied if the mass of the d quark is about 3 MeV/c?
greater than that of the u quark. In a way, this is unfortunate, because
we must conclude that the famous puzzle of the n-p mass difference
will not be solved until the standard model is extended enough to
provide a theory of the quark masses.

Weak Currents. We turn now to a discussion of the weak currents of
the quarks, which are dctermined in the same way as the weak
currents of the leptons in Note 8. Let us begin with just the « and d
quarks. Their electroweak assignments are as follows: the left-handed
components i and ¢, form an SU(2) doublet with Y = 15, and the
right-handed components ug and dy are SU(2) singlets with Y = 4/3
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and —%, respectively (recall Eq. 55).

The steps followed in going from Eq. 73 to Eq. 75 will yield the
electroweak Lagrangian of quarks. The contribution to the Lagran-
gian due to interaction of the weak neutral current J" of the u and d
quarks with Z%is

e

ey = T gno)
sin Bw cos Oy S 28, ®2
where
nc 1 2 1 Y 2 1 U
JL )= (E -3 Slnzew) ULl — 3 SlnzequYu Ur
11 ., = 1207
=5t g sin®dw | duyudi + 3 sin®Bwdryudr - (83)

The reader will enjoy deriving this result and also deriving the
contribution of the weak charged current of the quarks to the
electroweak Lagrangian. Equation 83 will be modified slightly when
we include the other quarks.

So far we have emphasized in Notes 8 and 9 the construction of the
QCD and celectroweak Lagrangians for just one lepton-quark
“family” consisting of the electron and its neutrino together with the
u and d quarks. Two other lepton-quark families are established
experimentally: the muon and its neutrino along with the ¢ and s
quarks and the tlepton and its neutrino along with the r and 6 quarks.
Just like (voh and ey, (v,)L and pr and (v,). and 1 form weak-SU(2)
doublets; eg, pg and 1R are each SU(2) singlets with a weak hyper-
charge of —2. Similarly, the weak quantum numbers of ¢ and s and of
t and b echo those of u and &: ¢, and s, form a weak-SU(2) doublet as
do g and b. Like ug and dg, the right-handed quarks cg, g, ’x, and
b are all weak-SU(2) singlets.

This triplication of families cannot be explained by the standard
model, although it may eventually turn out to be a critical fact in the
development of theories of the standard model. The quantum
numbers of the quarks and leptons are summarized in Tables 2 and 3
in “Particle Physics and the Standard Model.”

All these quark and lepton fields must be included in a Lagrangian
that incorporates both the electroweak and QCD Lagrangians. It is
quite obvious how to do this: the standard model Lagrangian is

simply the sum of the QCD and electroweak Lagrangians, except that
the terms occurring in both Lagrangians (the quark kinetic energy
terms /y;y"9,y; and the quark mass terms y;M;y,) are included just
once. Only the mass term requires comment.

The quark mass terms appear in the electroweak Lagrangian in the
form Lyukawa (EQ- 77). In the electroweak theory quarks acquire
masses only because SU(2) X U(1) is spontaneously broken. How-
ever, when there are three quarks of the same electric charge (such as
d, s, and b), the general form of the mass terms is the same as in Eq.
79, y; M;y), because there can be Yukawa couplings between d and s,
d and b, and s and b. The problem should already be clear: when we
speak of quarks, we think of fields that have a definite mass, that is,
fields for which Mj; is diagonal. Nevertheless, there is no reason for
the fields obtained directly from the electroweak symmetry breaking
to be mass eigenstates.

The final part of the analysis takes some care: the problem is to find
the most general relation between the mass eigenstates and the fields
occurring in the weak currents. We give the answer for the case of two
families of quarks. Let us denote the quark fields in the weak currents
with primes and the mass eigenstates without primes. There is
freedom in the Lagrangian to set u = u’ and ¢ = ¢’. If we do so, then
the most general relationship among d, s, d’, and s/ is

()= ) (7)

The parameter 8¢, the Cabibbo angle, is not determined by the
electroweak theory (it is related to ratios of various Yukawa cou-
plings) and is found experimentally to be about 13°, (When the b and
t (=t") quarks are included, the matrix in Eq. 84 becomes a 3-by-3
matrix involving four parameters that are evaluated experimentally.)
The correct weak currents are then given by Eq. 83 if all quark
families are included and primes are placed on all the quark fields.
The weak currents can be written in terms of the quark mass
eigenstates by substituting Eq. 84 (or its three-family generalization)
into the primed version of Eq. 83. The ratio of amplitudes for s — u
and d — u is tan O¢; the small ratio of the strangeness-changing to
non-strangeness-changing charged-current amplitudes is due to the
smallness of the Cabibbo angle. It is worth emphasizing again that the
standard model alone provides no understanding of the value of this
angle.O

—sin ec
cos B¢

cos B¢

sin 9(; (84)
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11 throughout his history man has

wanted to know the dimensions

of his world and his place in it.

Before the advent of scientific in-
struments the universe did not seem very
large or complicated. Anything too small to
detect with the naked eye was not known,
and the few visible stars might almost be
touched if only there were a higher hill
nearby.

Today, with high-energy particle ac-
celerators the frontier has been pushed down
to distance intervals as small as 107'6 cen-
timeter and with super telescopes to cos-
mological distances. These explorations
have revealed a multifaceted universe; at
first glance its diversity appears too com-
plicated to be described in any unified man-
ner. Nevertheless, it has been possible to
incorporate the immense variety of ex-
perimental data into a small number of
quantum field theories that describe four
basic interactions—weak, strong, electro-
magnetic, and gravitational. Their mathe-
matical formulations are similar in that each
one can be derived from a local symmetry.
This similarity has inspired hope for even
greater progress: perhaps an extension of the
present theoretical framework will provide a
single unified description of all natural
phenomena.

This dream of unification has recurred
again and again, and there have been many
successes: Maxwell’s unification of elec-
tricity and magnetism; Einstein’s unification
of gravitational phenomena with the
geometry of space-time; the quantum-me-
chanical unification of Newtonian mechan-
ics with the wave-like behavior of matter; the
quantum-mechanical generalization of elec-
trodynamics; and finally the recent unifica-
tion of electromagnetism with the weak
force. Each of these advances is a crucial
component of the present efforts to seek a
more complete physical theory.

Before the successes of the past inspire too
much optimism, it is important to note that a
unified theory will require an unprecedented
extrapolation. The present optimism is gen-
erated by the discovery of theories successful
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at describing phenomena that take place over
distance intervals of order 107'% centimeter
or larger. These theories may be valid to
much shorter distances, but that remains to
be tested experimentally. A fully unified the-
ory will have to include gravity and therefore
will probably have to describe spatial struc-
tures as small as 1073 centimeter, the funda-
mental length (determined by Newton’s
gravitational constant) in the theory of grav-
ity. History suggests cause for further
caution: the record shows many failures re-
sulting from attempts to unify the wrong, too
few, or too many physical phenomena. The
end of the 19th century saw a huge but
unsuccessful effort to unify the description of
all Nature with thermodynamics. Since the
second law of thermodynamics cannot be
derived from Newtonian mechanics, some
physicists felt it must have the most funda-
mental significance and sought to derive the
rest of physics from it. Then came a period of
belief in the combined use of Maxwell’s elec-
trodynamics and Newton’s mechanics to ex-
plain all natural phenomena. This effort was
also doomed to failure: not only did these
theories lack consistency (Newton’s equa-
tions are consistent with particles traveling
faster than the speed of light, whereas the
Lorentz invariant equations of Maxwell are
not), but also new experimental results were
emerging that implied the quantum structure
of matter. Further into this century came the
celebrated effort by Einstein to formulate a
unified field theory of gravity and elec-
tromagnetism. His failure notwithstanding,
the mathematical form of his classical theory
has many remarkable similarities to the
modern efforts to unify all known fundamen-
tal interactions. We must be wary that our
reliance on quantum field theory and local
symmetry may be similarly misdirected, al-
though we suppose here that it is not.

Two questions will be the central themes
of this essay. First, should we believe that the
theories known today are the correct compo-
nents of a truly unified theory? The compo-
nent theories are now so broadly accepted
that they have become known as the “stan-
dard model.” They include the electroweak

theory, which gives a unified description of
quantum electrodynamics (QED) and the
weak interactions, and quantum chromo-
dynamics (QCD), which is an attractive can-
didate theory for the strong interactions. We
will argue that, although Einstein’s theory of
gravity (also called general relativity) has a
somewhat different status among physical
theories, it should also be included in the
standard model. If it is, then the standard
model incorporates all observed physical
phenomena—from the shortest distance in-
tervals probed at the highest energy ac-
celerators to the longest distances seen by
modern telescopes. However, despite its ex-
perimental successes, the standard model re-
mains unsatisfying; among its shortcomings
is the presence of a large number of arbitrary
constants that require explanations. It re-
mains to be seen whether the next level of
unification will provide just a few insights
into the standard model or will unify all
natural phenomena.

The second question examined in this es-
say is twofold: What are the possible strate-
gies for generalizing and extending the stan-
dard model, and how nearly do models based
on these strategies describe Nature? A central
problem of theoretical physics is to identify
the features of a theory that should be ab-
stracted, extended, modified, or generalized.
From among the bewildering array of the-
ories, speculations, and ideas that have
grown from the standard model, we will
describe several that are currently attracting
much attention.

We focus on two extensions of established
concepts. The first is called supersymmetry;
it enlarges the usual space-time symmetries
of field theory, namely, Poincaré invariance,
to include a symmetry among the bosons
(particles of integer spin) and fermions
(particles of half-odd integer spin). One of
the intriguing features of supersymmetry is
that it can be extended to include internal
symmetries (see Note 2 in “Lecture Notes—
From Simple Field Theortes to the Standard
Model). In the standard model internal local
symmetries play a crucial role, both for
classifying elementary particles and for de-
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termining the form of the interactions among
them. The electroweak theory is based on the
internal local symmetry group SU(2) X U(1)
(see Note 8) and quantum chromodynamics
on the internal local symmetry group SU(3).
Gravity is based on space-time symmetries:
general coordinate invariance and local
Poincaré symmetry. It is tempting to try to
unify all these symmetries with supersym-
metry.

Other important implications of super-
symmetry are that it enlarges the scope of the
classification schemes of the basic particles
to include fields of different spins in the same
multiplet, and it helps to solve some tech-
nical problems concerning large mass ratios
that plague certain efforts to derive the stan-
dard model. Most significantly, if supersym-
metry is made to be a local symmetry, then it
automatically implies a theory of gravity,
called supergravity, that is a generalization of
Einstein’s theory. Supergravity theories re-
quire the unification of gravity with other
kinds of interactions, which may be, in some
future version, the electroweak and strong
interactions. The near successes of this ap-
proach are very encouraging,

The other major idea described here is the
extension of the space-time manifold to
more than four dimensions, the extra
dimensions having, so far, escaped observa-
tion. This revolutionary idea implies that
particles are grouped into larger symmetry
multiplets and the basic interactions have a’
geometrical origin. Although the idea of ex-
tending space-time beyond four dimensions
is not new, it becomes natural in the context
of supergravity theories because these com-
plicated theories in four dimensions may be
derived from relatively simple-looking the-
ories in higher dimensions.

We will follow these developments one
step further to a generalization of the field
concept: instead of depending.on space-time,
the fields may depend on paths in space-
time. When this generalization is combined
with supersymmetry, the resulting theory is
called a superstring theory. (The whimsi-
cality of the name is more than matched by
the theory’s complexity.) Superstring the-
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ories are encouraging because some of them
reduce, in a certain limit, to the only super-
gravity theories that are likely to generalize
the standard model. Moreover, whereas
supergravity fails to give the standard model
exactly, a superstring theory might succeed.
It seems that superstring theories can be
formulated only in ten dimensions.

Figure 1 provides a road map for this
essay, which journeys from the origins of the
standard model in classical theory to the
extensions of the standard model in super-
gravity and superstrings. These extensions
may provide extremely elegant ways to unify
the standard model and are therefore attract-
ing enormous theoretical interest. It must be
cautioned, however, that at present no ex-
perimental evidence exists for supersym-
metry or ¢xtra dimensions.

Review of the Standard Model

We now review the standard model with
particular emphasis on its potential for being
unified by a larger theory. Over the last
several decades relativistic quantum field
theories with local symmetry have succeeded
in describing all the known interactions
down to the smallest distances that have
been explored experimentally, and they may
be correct to much shorter distances.

Electrodynamics and Local Symmetry. Elec-
trodynamics was the first theory with local
symmetry. Maxwell’s great unification of
electricity and magnetism can be viewed as
the discovery that electrodynamics is de-
scribed by the simplest possible local sym-
metry, local phase invariance. Maxwell’s ad-
dition of the displacement current to the field
equations, which was made in order to insure
conservation of the electromagnetic current,
turns out to be equivalent to imposing local
phase invariance on the Lagrangian of ¢lec-
trodynamics, although this idea did not
emerge until the late 1920s.

A crucial feature of locally symmetric
quantum field theories is this: typically, for
each independent internal local symmetry

there exists a gauge field and its correspond-
ing particle, which is a vector boson (spin-1
particle) that mediates the interaction be-
tween particles. Quantum electrodynamics
has just one independent local symmetry
transformation, and the photon is the vector
boson (or gauge particle) mediating the inter-
action between electrons or other charged
particles. Furthermore, the local symmetry
dictates the exact form of the interaction.
The interaction Lagrangian must be of the
form eJ¥(x)A,(x), where J¥(x) is the current
density of the charged particles and A,(x) is
the field of the vector bosons. The coupling
constant e is defined as the strength with
which the vector boson interacts with the
current. The hypothesis that all interactions
are mediated by vector bosons or, equi- -
valently, that they originate from local sym-
metries has been extended to the weak and
then to the strong interactions.

Weak Interactions. Before the present under-
standing of weak interactions in terms of
local symmetry, Fermi’s 1934 phenomeno-
logical theory of the weak interactions had
been used to interpret many data on nuclear
beta decay. After it was modified to include
parity violation, it contained all the crucial
elements necessary to describe the low-
energy weak interactions. His theory as-
sumed that beta decay (e.g., n — p+ e +V,)
takes place at a single space-time point. The
form of the interaction amplitude is a prod-
uct of two currents J*J,, where each current
is a product of fermion fields, and J*J, de-
scribes four fermion fields acting at the point
of the beta-decay interaction. This ampli-
tude, although yielding accurate predictions
at low energies, is expected to fail at center-
of-mass energies above 300 GeV, where it
predicts cross sections that are larger than
allowed by the general principles of quantum
field theory.

The problem of making a consistent (re-
normalizable) quantum field theory to de-
scribe the weak interactions was not solved
until the 1960s, when the electromagnetic
and weak interactions were combined into a
locally symmetric theory. As outlined in Fig.
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Fig. 2. Comparison of neutrino-quark charged-current scattering in the Fermi
theory and the modern SU(2) X U(1) electroweak theory. (The bar indicates the
Dirac conjugate.) The point interaction of the Fermi theory leads to an inconsistent
quantum theory. The W * boson exchange in the electroweak theory spreads out the
weak interactions, which then leads to a consistent (renormalizable) quantum field
theory. J(" and J(” are the charge-raising and charge-lowering currents, respec-
tively. The amplitudes given by the two theories are nearly equal as long as the
square of the momentum transfer, q> = (p, — Py)’, is much less than the square of
the mass of the weak boson, Mi,).

2, the vector bosons associated with the elec-
troweak local symmetry serve to spread out
the interaction of the Fermi theory in space-
time in a way that makes the theory consis-
tent. Technically, the major problem with
the Fermi theory is that the Fermi coupling
constant, G, is not dimensionless (Gg =
(293 GeV)™?), and therefore the Fermi theory
is not a renormalizable quantum field the-
ory. This means that removing the infinities
from the theory strips it of all its predictive
power.

In the gauge theory generalization of
Fermi’s theory, beta decay and other weak
interactions are mediated by heavy weak
vector bosons, so the basic interaction has
the form gW*J, and the current-current in-
teraction looks pointlike only for energies
much less than the rest energy of the weak
bosons. (The coupling g is dimensionless,
whereas G is a composite number that in-
cludes the masses of the weak vector bosons.)
The theory has four independent local sym-
metries, including the phase symmetry that
yields electrodynamics. The local symmetry
group of the electroweak theory is SU(2) X
U(1), where U(1) is the group of phase trans-
formations, and SU(2) has the same struc-
ture as rotations in three dimensions. The
one phase angle and the three independent
angles of rotation in this theory imply the
existence of four vector bosons, the photon
plus three weak vector bosons, W™, Z0 and
W~. These four particles couple to the four
SU(2) X U(1) currents and are responsible
for the “electroweak” interactions.

The idea that all interactions must be de-
rived from local symmetry may seem simple,
but it was not at all obvious how to apply this
idea to the weak (or the strong) interactions.
Nor was it obvious that electrodynamics and
the weak interactions should be part of the
same local symmetry since, experimentally,
the weak bosons and the photon do not share
much in common: the photon has been
known as a physical entity for nearly eighty
years, but the weak vector bosons were not
observed until late 1982 and early 1983 at the
CERN proton-antiproton collider in the
highest energy accelerator experiments ever

77



performed; the mass of the photon is consis-
tent with zero, whereas the weak vector bos-
ons have huge masses (a little less than 100
GeV/c?); electromagnetic interactions can
take place over very large distances, whereas
the weak interactions take place on a dis-
tance scale of about 107'% centimeter; and
finally, the photon has no electric charge,
whereas the weak vector bosons carry the
electric and weak charges of the electroweak
interactions. Moreover, in the early days of
gauge theories, it was generally believed, al-
though incorrectly, that local symmetry of a
Lagrangian implies masslessness for the vec-
tor bosons.

How can particles as different as the
photon and the weak bosons possibly be
unified by local symmetry? The answer is
explained in detail in the Lecture Notes; we
mention here merely that if the vacuum of
a locally symmetric theory has a nonzero
symmetry charge density due to the
presence of a spinless field, then the vector
boson associated with that symmetry ac-
quires a mass. Solutions to the equations of
motion in which the vacuum is not invariant
under symmetry transformations are called
spontaneously broken soluttons, and the vec-
tor boson mass can be arbitrarily large
without upsetting the symmetry of the La-
grangian.

In the electroweak theory spontaneous
symmetry breaking separates the weak and
electromagnetic interactions and is the most
important mechanism for generating masses
of the elementary particles. In the theories
dicussed below, spontaneous symmetry
breaking is often used to distinguish interac-
tions that have been unified by extending
symmetries (see Note 8).

The range of validity of the electroweak
theory is an important issue, especially when
considering extensions and generalizations
to a theory of broader applicability. “*Range
of validity™ refers to the energy (or distance)
scale over which the predictions of a theory
are valid. The old Fermi theory gives a good
account of the weak interactions for energies
less than 50 GeV, but at higher energies,
where the effect of the weak bosons is to
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Table 1

Review of fundamental interactions. -

(Proton Decay)

' Intetacti‘()n
_ Example Name
' Any Charged Particle
Photon Electromagnetic u()
(QED)
Any Charged Particle
Quark
S,trio,nkg;’ f, [y
QCD)
v
e
>/\f\/\, w Electroweak SU(2) X U(1)
o
Any Massive Pari:ifc{ej 5%
: “Graviton: vaity, o Po;incaréf i3
'Any: Massive "P,'a"ftiéle =
d e’
Conjectured
Strong- SU(5)
X Electroweak
u Unification

' Local Symmetry: The generator of the electromagnenc U( 1) is a linear combination of

the generators of t
SU(Z) The gmerc

he electroweak U(1) and the diagonal generator of the electroweak S
1l coordinate invariance of gravity permits several formulations of
grav:ty in which dxfferent local symmetries can be emphasxzed

Range of Force The electromagnetic and gravnanonal forces fall off as 1/r% Of course, .

the electromagnetic part of the electroweak force is long range

Relative 'Strf-n‘gth at Low Energy: The strength of the strong interactions is extre;‘mely”
energy-dependent. At low energy hadronic amplitudes are typically 100 times stronger

than electromagnetxc amplitudes.

Number. of  Vector Bosons; The graviton can be v‘iewedkasf the - gauge particle. for
translations, and as a consequence it has a spin of 2. After all the symmetries of gravity |
are taken into-account, the graviton is massless and has only two degrees of freedom

with helicities (spin components) 2.
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Number of Relative
Vector Range of Strength at Mass
Bosons Force Low Energy Scale
1 (photon) Infinite 1/137
8 (gluons) 1073 cm 1 =200 MeV/c?
4 (3 weak _1s
bosons, 1 107" cm 1075 GF'? =290 GeV/c?
photon) (weak)
(Graviton) Infinite 10738 GN?=1.2 X 10" GeV/c?
24 107% cm 1073 10" GeV/c?

Mass Scale: There is no universal definition of mass scale in particle physics. It is,
however, possible to select a mass scale of physical significance for each of these
theories. For exampile, in the electroweak and SU(5) theories the mass scale is
associated with the spontaneous symmetry breaking. In both cases the vacuum value
of a scalar field (which has dimensions of mass) has a nonzero value. In the weak
interactions GF is related directly to this vacuum value (see Fig. 2) and, at the same
time, to the masses of the weak bosons. Similarly, the scale of the SU(5) model is
related to the proton-decay rate and to the vacuum value of a different scalar field. In
the Fermi theory G is the strength of the weak interaction in the same way that Gy is
the strength of the gravitational interaction. However, in gravity theory, with its
massless graviton, the origin of the large value of Gy is not well understood. (It might
be related to a vacuum value but not in precisely the way that G is.) The QCD mass
scale is defined in a completely different way. Aside from the quark masses, the
classical QCD Lagrangian has no mass scales and no scalar fields. However, in
quantum field theory the coupling of a gluon to a quark current depends on the
momentum carried by the gluon, and this coupling is found to be large for momentum
transfers below 200 MeV/c. It is thus customary to select p = 200 MeV/c? (where p is
the parameter governing the scale of asymptotic freedom) as the mass scale for QCD.

spread out the weak interactions in space-
time, the Fermi theory fails. The electroweak
theory remains a consistent quantum field
theory at energies far above a few hundred
GeV and reduces to the Fermi theory (with
the modification for parity violation) at
lower energies. Moreover, it correctly
predicts the masses of the weak vector bos-
ons. In fact, until experiment proves other-
wise, there are no logical impediments to
extending the electroweak theory to an
energy scale as large as desired. Recall the
example of electrodynamics and its quan-
tum-mechanical generalization. As a theory
of light in the mid-19th century, it could be
tested to about 1073 centimeter. How could it
have been known that QED would still be
valid for distance scales ten orders of magni-
tude smaller? Even today it is not known
where quantum electrodynamics breaks
down.

Strong Interactions. Quantum chromo-
dynamics is the candidate theory of the
strong interactions. It, too, is a quantum field
theory based on a local symmetry; the sym-
metry, called color SU(3), has eight inde-
pendent kinds of transformations, and so the
strong interactions among the quark fields
are mediated by eight vector bosons, called
gluons. Apparently, the local symmetry of
the strong interaction theory is not spon-
taneously broken. Although conceptually
simpler, the absence of symmetry breaking
makes it harder to extract experimental
predictions. The exact SU(3) color symmetry
may imply that the quarks and gluons, which
carry the SU(3) color charge, can never be
observed in isolation. There seem to be no
simple relationships between the quark and
gluon fields of the theory and the observed
structure of hadrons (strongly interacting
particles). The quark model of hadrons has
not been rigorously derived from QCD.

One of the main clues that quantum
chromodynamics is correct comes from the
results of “deep” inelastic scattering experi-
ments in which leptons are used to probe the
structure of protons and neutrons at very
short distance intervals. The theory predicts
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that at very high momentum transfers or,
equivalently, at very short distances (<1073
centimeter) the quark and gluon fields that
make up the nucleons have a direct and
fundamental interpretation: they are almost
noninteracting, point-like particles. Deep in-
elastic electron, muon, and neutrino experi-
ments have tested the short-distance struc-
ture of protons and neutrons and have con-
firmed qualitatively this short-distance
prediction of quantum chromodynamics. At
relatively long distance intervals of 107'3
centimeter or greater, the theory must ac-
count for the existence of the observed
hadrons, which are complicated composites
of the quark and gluon fields. Until progress
is made in deriving the list of hadrons from
quantum chromodynamics, we will not
know whether it is the correct theory of the
strong interactions. This is a rather peculiar
situation: the validity of QCD at energies
above a few GeV is established (and there is
no experimental or theoretical reason to
limit the range of validity of the theory at
even higher energies), but the long-distance
(low-energy) structure of the theory, includ-
ing the hadron spectrum, has not yet been
calculated. Perhaps the huge computational
effort now being devoted to testing the the-
ory will resolve this question soon.

Gravity. Gravity theory (and by this is meant
Einstein’s theory of general relativity) should
be added to the standard model, although it
has a different status from the electroweak
and strong theories. The energy scale at
which gravity becomes strong, according to
Einstein’s (or Newton’s) theory, is far above
the electroweak scale: it is given by the
Planck mass, which is defined as (hc/Gn)"2,
where Gy 1s Newton’s gravitational constant,
and is equal to 1.2 X 10"° GeV/CZ. (In quan-
tum theories distance is inversely propor-
tional to energy; the Planck mass cor-
responds to a length (the Planck length) of
1.6 X 107* centimeter.) Large mass scales
are typically associated with small interac-
tion rates, so gravity has a negligible effect on
high-energy particle physics at present ac-
celerator encrgies. The reason we feel the
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effect of this very weak interaction so readily
in everyday life is that the graviton, which
mediates the interaction, is massless and has
long-range interactions like the photon.
Moreover, the gravitational force has always
been found to be attractive; matter in bulk
cannot be “gravitationally neutral” in the
way that it is typically electrically neutral.

At present there are no experimental
reasons that compel us to include gravity in
the standard model; present particle
phenomenology is explained without it.
Moreover, its theoretical standing is shaky,
since all attempts to formulate Einstein’s
gravity as a consistent quantum field theory
have failed. The problem is similar to that of
the Fermi theory: Newton’s constant has
dimensions of (energy) ™2 so the theory is not
renormalizable. However, like the Fermi the-
ory, it is valid up to an energy that is a
substantial fraction of its energy scale of 10'°
GeV. This is the only known serious in-
consistency in the standard model when
gravity is included. Thus, including gravity
in the standard model seems to pose many
problems. Yet, there is a good reason to
attempt this unification: there exist theoreti-
cal models (as we discuss later) that suggest
that the electroweak and strong theories may
cure the ills of gravitational theory, and uni-
fication with gravity may require a theory
that predicts the phenomenological inputs of
the electroweak and strong theories.

The mathematical structure of gravity the-
ory provides another reason for its inclusion
in the standard model. Like the other interac-
tions, gravity is based on a local symmetry,
the Poincaré symmetry, which includes
Lorentz transformations and space-time
translations. In this case, however, not all the
generators of the symmetry group give rise to
particles that mediate the gravitational inter-
action. In particular, Einstein’s theory has no
kinetic energy terms in the Lagrangian for
the gauge fields corresponding to the six in-
dependent symmetries of the Lorentz group.
The space-time translations have associated
with them the gauge field called the graviton
that mediates the gravitational interaction.
The graviton field has a spin of 2 and is

denoted by efi(x), where the vector index p
on the usual boson field is combined with the
space-time translation index a to form a spin
of 2. The metric tensor is, essentially, the
square of eji(x). The massless graviton has
two helicities (spin projections along the
direction of motion) of values 2. In some
ways these are merely technical differences,
and gravity is like the other interactions.
Nevertheless, these differences are crucial in
the search for theories that unify gravity with
the other interactions.

Summary. Let us summarize why the stan-
dard model including gravity may be the
correct set of component theories of a truly
unified theory.

O The standard model (with its phenomeno-
logically motivated symmetries, choice of
fields, and Lagrangian) correctly accounts
for all elementary-particle data.

O The standard model contains no known
mathematical inconsistencies up to an
energy scale near 10'° GeV, and then only
gravity gives difficulty.

O All components of the standard model
have similar mathematical structures. Es-
sentially, they are local gauge theories,
which can be derived from a principle of
local symmetry.

O There are no logical or phenomenological
requirements that force the addition of
further components to describe phe-
nomena at scales greater than 107'¢ cen-
timeter. Thus, we are free to seek theories
with a range of validity that may tran-
scend the present experimental frontier.

We still have to cope with the huge ex-
trapolation, by seventeen orders of magni-
tude, in energy scale necessary to include
gravity in the theory. At best it appears reck-
less to begin the search for such a unification,
in spite of the good luck historically with
quantum clectrodynamics. However, even if
we ignore gravity, the energy scales en-
countered in attempts to unify just the elec-
troweak and strong interactions are surpris-
ingly close to the Planck mass. These more



Toward a Unified Theory

1]
1
i
¥
SuU
01 L h (3)
|
- 1
= ]
: |
Q 1 SuU(2)
=
£ ,
g |
3
=} |
o |
|
| U1 ””
0.01 :______—/
i
I
i
i

Su(s)

1015

Mass (GeV/c?)

modest efforts to unify the fundamental in-
teractions may be an important step toward
including gravity. Moreover, these efforts re-
quire the belief that local gauge theories are
correct to distance intervals around 107%°
centimeter, and so they have made theorists
more “‘comfortable” when considering the
extrapolation to gravity, which is only four
orders of magnitude further. Whether this
outlook has been misleading remains to be
seen. The components of the standard model
are summarized in Table 1.

Electroweak-Strong Unification
without Gravity

The SU(2) X U(1) X SU(3) local theory isa
etailed phenomenological framework in
hich to analyze and correlate data on elec-
roweak and strong interactions, but the
hoice of symmetry group, the charge assign-
ents of the scalars and fermions, and the
alues of many masses and couplings must
e deduced from experimental data. The
roblem is to find the simplest extension of
his part of the standard model that also
nifies (at least partially) the interactions,

Fig. 3. Unification in the SU(5) model. The values of the SU(2), U(1), and SU(3)
couplings in the SU(5) model are shown as functions of mass scale. These values
are calculated using the renormalization group equations of quantum field theory.
At the unification energy scale the proton-decay bosons begin to contribute to the
renormalization group equations; at higher energies, the ratios track together along
the solid curve. If the high-mass bosons were not included in the calculation, the
couplings would follow the dashed curves. ’

assignments, and parameters that must be
put into it “by hand.” Total success at uni-
fication is not required at this stage because
the range of validity will be restricted by
gravitational effects.

One extension is to a local symmetry
group that includes SU(2) X U(1) X SU(3)
and interrelates the transformations of the
standard model by further internal sym-
metry transformations. The simplest exam-
ple is the group SU(S), although most of the
comments below also apply to other
proposals for electroweak-strong unification.
The SU(5) local symmetry implies new con-
straints on the fields and parameters in the
theory. However, the theory also includes
new interactions that mix the electroweak
and strong quantum numbers; in SU(5) there
are vector bosons that transform quarks to
leptons and quarks to antiquarks. These vec-
tor bosons provide a mechanism for proton
decay.

If the SU(5) local symmetry were exact, all
the couplings of the vector bosons to the
symmetry currents would be equal (or re-
lated by known factors), and consequently
the proton decay rate would be near the weak

decay rates. Spontaneous symmetry breaking
of SU(5) is introduced into the theory to
separate the electroweak and strong interac-
tions from the other SU(5) interactions as
well as to provide a huge mass for the vector
bosons mediating proton decay and thereby
reduce the predicted decay rate. To satisfy
the experimental constraint that the proton
lifetime be at least 10! years, the masses of
the heavy vector bosons isn the SU(5) model
must be at least 10'* GeV/c? Thus, ex-
perimental facts already determine that the
electroweak-strong unification must in-
troduce masses into the theory that are
within a factor of 10° of the Planck mass.

It is possible to calculate the proton life-
time in the SU(5) model and similar unified
models from the values of the couplings and
masses of the particles in the theory. The
couplings of the standard model (the two
electroweak couplings and the strong cou-
pling) have been measured in low-energy
processes. Although the ratios of the cou-
plings are predicted by SU(5), the symmetry
values are accurate only at energies where
SU(5) looks exact, which is at energies above
the masses of the vector bosons mediating
proton decay. In general, the strengths of the
couplings depend on the mass scale at which
they are measured. Consequently, the SU(5)
ratios cannot be directly compared with the
values measured at low energy. However, the
renormalization group equations of field the-
ory prescribe how they change with the mass
scale. Specifically, the change of the coupling
at a given mass scale depends only on all the
elementary particles with masses less than
that mass scale. Thus, as the mass scale is
lowered below the mass of the proton-decay
bosons, the latter must be omitted from the
equations, so the ratios of the couplings
change from the SU(5) values. If we assume
that the only clementary ficlds contributing
to the equations are the low-mass fields
known experimentally and if the proton-
decay bosons have a mass of 10'4 Ge\’/c2
(see Fig. 3), then the low-energy experimen-
tal ratios of the standard model couplings are
predicted correctly by the renormalization
group equations but the proton lifetime
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prediction is a little less than the experimen-
tal lower bound. However, adding a few
more “low-mass” (say, less than 10'2
GeV/c?) particles to the equations lengthens
the lifetime predictions, which can thereby
be pushed well beyond the limit attainable in
present-day experiments.

Thus, using the proton-lifetime bound
directly and the standard model couplings at
low mass scale, we have seen that elec-
troweak-strong unification implies mass
scales close to the scale where gravity must
be included. Even if it turns out that the
electroweak-strong unification is not exactly
correct, it has encouraged the extrapolation
of present theoretical ideas well beyond the
energies available in present accelerators.

Electroweak-strong unified models such as
SU(5) achieve only a partial unification. The
vector bosons are fully unified in the sense
that they and their interactions are de-
termined by the choice of SU(S) as the local
symmetry. However, this is only a partial
unification. The choice of fermion and scalar
multiplets and the choice of symmetry-
breaking patterns are left to the discretion of
the physicist, who makes his selections based
on low-energy phenomenology. Thus, the
“unification” in SU(5) (and related local
symmetries) is far from complete, except for
the vector bosons. (This suggests that the-
ories in which all particles are more closely
related to the vector bosons might remove
some of the arbitrariness; this will prove to
be the case for supergravity.)

In summary, strong experimental evi-
dence for electroweak-strong unification,
such as proton decay, would support the
study of quantum field theories at energies
just below the Planck mass. From the van-
tage of these theories, the electroweak and
strong interactions should be the low-energy
limit of the unifying theory, where “low
energy” corresponds to the highest energies
available at accelerators today! Only future
experiments will help decide whether the
standard model is a complete low-energy
theory, or whether we are repeating the age-
old error of omitting some low-energy inter-
actions that are not yet discovered. Never-
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theless, the quest for total unification of the
laws of Nature is exciting enough that these
words of caution are not sufficient to delay
the search for theories incorporating gravity.

Toward Unification with Gravity

Let us suppose that the standard model
including gravity is the correct set of theories
to be unified. On the basis of the previous
discussion, we also accept the hypothesis that
quantum field theory with local symmetry is
the correct theoretical framework for ex-
trapolating physical theory to distances per-
haps as small as the Planck length. Quantum
field theory assumes a mathematical model
of space-time called a manifold. On large
scales a manifold can have many different
topologies, but at short enough distance
scale, a manifold always looks like a flat
(Minkowski) space, with space and time in-
finitely divisible. This might not be the struc-
ture of space-time at very small distances,
and the manifold model of space-time might
fail. Nevertheless, all progress at unifying
gravity and the other interactions described
here is based on theories in which space-time
is assumed to be a manifold.

Einstein’s theory of gravity has fascinated
physicists by its beauty, elegance, and correct
predictions. Before examining efforts to ex-
tend the theory to include other interactions,
let us review its structure. Gravity is a
“geometrical” theory in the following sense.
The shape or geometry of the manifold is
determined by two types of tensors, called
curvature and torsion, which can be con-
structed from the gravitational field. The
Lagrangian of the gravitational field depends
on the curvature tensor. In particular, Ein-
stein’s brilliant discovery was that the
curvature scalar, which is obtained from the
curvature tensor, is essentially a unique
choice for the kinetic energy of the gravita-
tional field. The gravitational field calculated
from the equations of motion then de-
termines the geometry of the space-time
manifold. Particles travel along “straight
lines” (or geodesics) in this space-time. For

example, the orbits of the planets are
geodesics of the space-time whose geometry
is determined by the sun’s gravitational field.

In Einstein’s gravity all the remaining
fields are called matter fields. The La-
grangian is a sum of two terms:

¥ = ggravity + L matter » (H

where the curvature scalar %y, is the
kinetic energy of the graviton, and % maer
contains all the other fields and their inter-
actions with the gravitational field. The in-
teraction term in the Lagrangian, which cou-
ples the gravitational field (the metric tensor)
to the energy-momentum tensor, has a form
almost identical to the term that couples the
electromagnetic field to the electromagnetic
current. Newton’s constant, which has
dimensions of (mass) ™2, appears in the ratio
of the two terms in Eq. 1 as a coupling
analogous to the Fermi coupling in the weak
theory. This complicates the quantum gen-
eralization, just as it did in Fermi's weak
interaction theory, and it is not possible to
formulate a consistent quantum theory with
Eq. 1. Actually, the situation i1s even worse,
because Lyrviy alone does not lead to a
consistent quantum theory either, although
the inconsistencies are not as bad as when
& mauer 18 included.

This suggests that our efforts to unify grav-
ity with the other interactions might solve
the problems of gravity: perhaps we can join
the matter fields together with the gravita-
tional field in something like a curvature|
scalar and thereby eliminate % maqer. In addi
tion, generalizing the graviton field in thi
way might lead to a consistent (re
normalizable) quantum theory of gravity
There are reasons to hope that the proble
of finding a renormalizable theory of gravit
is solved by superstrings, although the proo
is far from complete. For now, we discuss th
unification of the graviton with other field
without concern for renormalizability.

We will discuss several ways to find mani
folds for which the curvature scalar depend
on many fields, not just the gravitationa
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ield. This generally requires extending the 4-
imensional space-time manifold. The fields
nd manifold must satisfy many constraints
efore this can be done. All the efforts to
nify gravity with the other interactions have
een formulated in this way, but progress
as not made until the role of spontaneous
ymmetry breaking was appreciated. As we
ow describe, it is crucial for the solutions of
he theory to have less symmetry than the
agrangian has.

In the standard model the generators of
he space-time Poincaré symmetry commute
ith (are independent of) the generators of
he internal symmetries of the electroweak
nd strong interactions. We might look for a

.

Fig. 4. Two-dimensional analogue of the vacuum geometry of a Kaluza-Klein
theory. From great distances the geometry looks one-dimensional, but up close the
second dimension, which is wound up in a circle, becomes visible. If space-time has
more than four dimensions, then the extra dimensions could have escaped detection
if each is wound into a circle whose radius is less than 107'° centimeter.

local symmetry that interrelates the space-
time and internal symmetries, just as SU(5)
interrelates the electroweak and strong inter-
nal symmetries. Unfortunately, if this
enlarged symmetry changes simultanecously
the internal and space-time quantum
numbers of several states of the same mass,
then a theorem of quantum field theory re-
quires the existence of an infinite number of
particles of that mass. However, this seem-
ingly catastrophic result does not prevent the
unification of space-time and internal sym-
metries for two reasons: first, all symmetries
of the Lagrangian need not be symmetries of
the states because of spontaneous symmetry
breaking; and second, the theorem does not

apply to symmetries such as supersymmetry,
with its anticommuting generators.

These two loopholes in the assumptions of
the theorem have suggested two directions of
research in the attempt to unify gravity with
the other interactions. First, we might sup-
pose that the dimensionality of space-time is
greater than four, and that spontaneous sym-
metry breaking of the Poincaré invariance of
this larger space separates 4-dimensional
space-time from the other dimensions. The
symmetries of the extra dimensions can then
correspond to internal symmetries, and the
symmetries of the states in four dimensions
need not imply an unsatisfactory infinity of
states. A second approach is to extend the
Poincaré symmetry to supersymmetry,
which then requires additional fermionic
fields to accompany the graviton. A com-
bination of these approaches leads to the
most interesting theories.

Higher Dimensional Space-Time

If the dimensionality of space-time is
greater than four, then the geometry of space-
time must satisfy some strong observational
constraints. In a 5-dimensional world the
fourth spatial direction must be invisible to
present experiments. This is possible if at
each 4-dimensional space-time point the ad-
ditional direction is a little circle, so that a
tiny person traveling in the new direction
would soon return to the starting point. The-
ories with this kind of vacuum geometry are
generically called Kaluza-Klein theories.!

It is easy to visualize this geometry with a
two-dimensional analogue, namely, a long
pipe. The direction around the pipe is
analogous to the extra dimension, and the
location along the pipe is analogous to a
location in 4-dimensional space-time. If the
means for examining the structure of the
pipe are too coarse to see distance intervals
as small as its diameter, then the pipe ap-
pears 1-dimensional (Fig. 4). If the probe of
the structure is sensitive to shorter distances,
the pipe is a 2-dimensional structure with
one dimension wound up into a circle.
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The physically interesting solutions of
Einstein’s 4-dimensional gravity are those in
which, if all the matter is removed, space-
time is flat. The 4-dimensional space-time
we see around us is flat to a good approxima-
tion; it takes an incredibly massive hunk of
high-density (much greater than any density
observed on the earth) matter to curve space.
However, it might also be possible to con-
struct a higher dimensional theory in which
our 4-dimensional space-time remains flat in
the absense of identifiable matter, and the
extra dimensions are wound up into a “little
ball.” We must study the generalizations of
Einstein’s equations to see whether this can
happen, and if it does, to find the geometry of
the extra dimensions.

The Cosmological Constant Problem. Before
we examine the generalizations of gravity in
more detail, we must raise a problem that
pervades all gravitational theories. Einstein’s
equations state that the Einstein tensor
(which is derived from the curvature scalar
in finding the equations of motion from the
Lagrangian) is proportional to the energy-
momentum tensor. If, in the absence of all
matter and radiation, the energy-momentum
tensor is zero, then Einstein’s equations are
solved by flat space-time and zero gravita-
tional field. In 4-dimensional classical gen-
eral relativity, the curvature of space-time
and the gravitational field result from a
nonzero energy-momentum tensor due to
the presence of physical particles.

However, there are many small effects,
such as other interactions and quantum ef-
fects, not included in classical general rel-
ativity, that can radically alter this simple
picture. For example, recall that the elec-
troweak theory is spontaneously broken,
which means that the scalar field has a
nonzero vacuum value and may contribute
to the vacuum value of the energy-momen-
tum tensor. If it does, the solution to the
Einstein equations in vacuum is no longer
flat space but a curved space in which the
curvature increases with increasing vacuum
energy. Thus, the constant value of the po-
tential energy, which had no effect on the
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weak interactions, has a profound effect on
gravity.

At first glance, we can solve this difficulty
in a trivial manner: simply add a constant to
the Lagrangian that cancels the vacuum
energy, and the universe 1s saved. However,
we may then wish to compute the quantum-
mechanical corrections to the electroweak
theory or add some additional fields to the
theory; both may readjust the vacuum
energy. For example, electroweak-strong uni-
fication and its quantum corrections will
contribute to the vacuum energy. Almost all
the details of the theory must be included in
calculating the vacuum energy. So, we could
repeatedly readjust the vacuum energy as we
learn more about the theory, but it seems
artificial to keep doing so unless we have a
good theoretical reason. Moreover, the scale
of the vacuum energy is set by the mass scale
of the interactions. This is a dilemma. For
example, the quantum corrections to the
electroweak interactions contribute enough
vacuum energy to wind up our 4-dimen-
sional space-time into a tiny ball about 107'3
centimeter across, whereas the scale of the
universe is more like 10?8 centimeters. Thus,
the observed value of the cosmological con-
stant is smaller by a factor of 10%? than the
value suggested by the standard model.
Other contributions can make the theoretical
value even larger. This problem has the in-
nocuous-sounding name of ‘“the cos-
mological constant problem.” At present
there are no principles from which we can
impose a zero or nearly zero vacuum energy
on the 4-dimensional part of the theory, al-
though this problem has inspired much re-
search effort. Without such a principle, we
can safely say that the vacuum-energy
prediction of the standard model is wrong.
At best, the theory is not adequate to con-
front this problem.

If we switch now to the context of gravity
theories in higher dimensions, the difficult
question is not why the extra dimensions are
wound up into a little ball, but why our 4-
dimensional space-time is so nearly flat,
since it would appear that a large cos-
mological constant is more natural than a

small one. Also, it is remarkable that the
vacuum energy winding the extra
dimensions into a little ball is conceptually
similar to the vacuum charge of a local sym-
metry providing a mass for the vector bos-
ons. However, in the case of the vacuum
geometry, we have no experimental data that
bear on these speculations other than the
remarkable flatness of our 4-dimensional
space-time. The remaining discussion of uni-
fication with gravity must be conducted in
ignorance of the solution to the cosmological
constant problem.

Internal Symmetries
from Extra Dimensions

The basic scheme for deriving local sym-
metries from higher dimensional gravity was
pioneered by Kaluza and Klein' in the 1920s,
before the weak and strong interactions were
recognized as fundamental. Their attempts
to unify gravity and electrodynamics in four
dimensions start with pure gravity in five
dimensions. They assumed that the vacuum
geometry is flat 4-dimensional space-time
with the fifth dimension a little loop of de-
finite radius at each space-time point, just as|
in the pipe analogy of Fig. 4. The Lagrangian
consists of the curvature scalar, constructed
from the gravitational field in fiv
dimensions with its five independent com
ponents. The relationship of a higher dimen
sional field 1o its 4-dimensional fields 1s sum
marized in Fig. 5 and the sidebar, “‘Field
and Spin in Higher Dimensions.” The in
finite spectrum in four dimensions include
the massless graviton (two helicity compo
nents of values +2), a massless vector boso
(two helicity components of £1), a massles
scalar field (one helicity component of 0)
and an infinite series of massive spin-
pyrgons of increasing masses. (The ter
“pyrgon” derives from mopyoo, the Gree
word for tower.) The Fourier expansion fo
each component of the gravitational field i
identical to Eq. 1 of the sidebar. Since th
extra dimension is a circle, its symmetry is
phasc symmetry just as in ¢lectrodynamic
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ig. 5. A field in D dimensions unifies fields of different
pins and masses in four dimensions. In step 1 the spin
omponents of a single higher dimensional spin are resolved
nto several spins in four dimensions. (The total number of
omponents remains constant.) Mathematically this is
chieved by finding the spins J,, J,, ... in four dimensions
at are contained in “spin- ¢’ of D dimensions. Step 2 is

the harmonic expansion of the 4-dimensional spin compo-
nents on the extra dimensions, which then resolves a single
massless D-dimensional field into an infinite number of 4-
dimensional fields of varying masses. When the 4-dimen-
sional mass is zero, the corresponding 4-dimensional field is
called a zero mode. The 4-dimensional fields with 4-dimen-
sional mass form an infinite sequence of pyrgons.

he symmetry of this vacuum state is not the
-dimensional Poincaré symmetry but the
irect product of the 4-dimensional Poincaré
oup and a phase symmetry.

This skeletal theory should not be taken
riously, except as a basis for generalizing to

more realistic theories. The zero modes
(massless particles in four dimensions) are
electrically neutral. Only the pyrgons carry
electric charge. The interaction associated
with the vector boson in four dimensions
cannot be electrodynamics because there are

no low-mass charged particles. (Adding fer-
mions to the 5-dimensional theory does not
help, because the resulting 4-dimensional
fermions are all pyrgons, which cannot be
low mass either.) Nevertheless, the
hypothesis that all interactions are conse-
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Fields in Higher Dimensions. We describe here how to construct a
field in higher dimensions and how such @ field is related to fields in
the 4-dimensional world in which we live, Higherdimensional fields
unify an infinite number of 4-dimensional fields. A typical and

in five-dimensions. A scalar field has only one component, so it can
be written as @(xy), where x is the 4-dimensional space-time
coordinate and y is the coordinate for the fifth dimension. We will
assume that the fifth dimension is a little circle with radius R, where
R is independent of x. (After this example, we examine the gen-
eralizations .to more than five dimensions and to fields carrying
nonzero spin in the higher dimensions.)

5-dimensional scalar field can be written in the form
o) = 2 q,(xJexp(iny/R), (1)

where nis an integer, and @,(x) are 4-dimensional fields. The Fourier
series satisfies the requirement that the field is single-valued in the
extra dimension, since Eq. 1 has the same value at the identical points
y and y+ 2rR. Usually the wave equation of ¢(x,y) is a straight-
forward generalization of the 4-dimensional scalar wave equation
(that is, the Klein-Gordon equation) in-the limit thatinteractions can
be ignored. The S-dimensional Klein-Gordon equation for a massless
S5-dimensional particle is

92 a2
(—- —vio 5;2) o)) =0. @

quences of the symmetries of space-time is so

_simple matter to substitute the Fourier.expansion of Eq :
f‘;and use the orthogonality of the expansion functions exp(my/R) to
simple example of this can be seen from a scalar field (a spin-0 field)

Functions on a circle can be expanded in a Fourier series; thus, the . equation for a massless 4-d1men51onal scalar field, wherea

number of fields ‘and ‘is very complicated to analyze Fi

The presence of additional terms depends on the details of the
Lagrangian, and we ignore them for: the present descnptmn Ttis a

rewrite Eq. 2 as an infinite number of equations in four dlmenswns
one for each ¢,(x):

2
[6%2 - Vit (él)z] (pn(X) =,

Note the following very important point: for n=0, Eq.' 3 i

Eq. 3 is the wave equatlon for a particle with mass /R
massless particle, or “zero ‘modé,” should correspond to a field |
observable in our world. The fields with nonzero mass are called”
“pyrgons,” since they are on a “tower” of particles, one for each #. If
R'is near the Planck length (10733 centimeter), then the pyrgons have
masses on the order of the Planck mass. However, it is also possible
that R can be much larger, say as large as 107'¢ centimeter, without
conflicting with experience. o

The 4-dimensional formof the Lagrangian depends on a

purposes it is helpful to: truncate the theory, keeping a spemally .
chosen set of fields. For example, 5-dimensional Einstein gravity is
simplified by omitting all the pyrgons. This can be achieved by
requiring that the fields do not depend on y, a procedure called
“dimensional reduction.” The dimensionally reduced theory should

attractive that efforts to generalize the
Kaluza-Klein idea have been vigorously
pursued. These theories require a more com-
plete discussion of the possible candidate
manifolds of the extra dimensions.

The geometry of the extra dimensions in
the absence of matter is typically a space with
a high degree of symmetry. Symmetry re-
quires the existence of transformations in
which the starting point looks like the point
reached after the transformation. (For exam-
ple, the environments surrounding each
point on a sphere are identical.) Two of the
most important examples are “‘group mani-
folds” and *‘coset spaces,” which we briefly
describe.

The tranformations of a continuous group
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are identified by N parameters, where N is
the number of independent transformations
in the group. For example, N = 3 for SU(2)
and 8 for SU(3). These parameters are the
coordinates of an N-dimensional manifold.
Ifthe vacuum values of fields are constant on
the group manifold, then the vacuum solu-
tion is said to be symmetric.

Coset spaces have the symmetry of a group
too, but the coordinates are labeled by a
subset of the parameters of a group. For
example, consider the space SO(3)/SO(2). In
this example, SO(3) has three parameters,
and SO(2) is the phase symmetry with one
parameter, so the coset space SO(3)/SO(2)
has three minus one, or two, dimensions.
This space is called the 2-sphere, and it has
the geometry of the surface of an ordinary

sphere. Spheres can be generalized to an
number of dimensions: the N-dimension
sphere is the coset space [SO(N + 1))/SO(
Many other cosets, or “ratios” of group:
make spaces with large symmetries. It |
possible to find spaces with the symmetri
of the electroweak and strong interaction
One such space is the group manifold SU(
X U(l) X SU(3), which has 1wely
dimensions. More interesting is the lowe
dimensional space with those symmetrie
namely, the coset space [SU(3) X SU(2)
UD]J/[SUR) X UW) X U(1)], which h
dimension8+3+1—3—-1—1=7(T
SU(2) and the U(1)’s in the denominat
differ from those in the numerator, so th
cannot be “canceled.”) Thus, one might ho
that (4 + 7 = 11)-dimensional gravity wou
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Higher Dimensions

describe the low-energy limit of the theory.

The gravitational field can be generalized to higher (>>5) dimen-
sional manifolds, where the extra dimensions at each 4-dimensional
space-time point form a little ball of finite volume. The mathematics
requires a generalization of Fourier series to “harmonic™ expansions
on these spaces, Each field (or field component if it has spin) unifies
an infinite set of pyrgons, and the series may also contain some zero
modes. The terms in the series correspond to fields of increasing 4-
dimensional mass, just as in the S-dimensional example. The kineti¢
energy in the extra dimensions of each term in the series then
corresponds to a mass in our space-time. The higher dimensional
field quite generally describes mathematically an infinite number of
4-dimensional fields.

Spin in Higher Dimensions. The definition of spin in D dimensions
depends on the D-dimensional Lorentz symmetry; 4-dimensional
Lorentz symmetry is naturally embedded in the D-dimensional
symmetry. Consequently a D-dimensional field of a specific spin
unifies 4-dimensional ficlds with different spins.

Conceptually the description of D-dimensional spin is similar to
that of spin in four dimensions. A massless particle of spin J in four
dimensions has helicities +J and —J corresponding to the projections
of spin along the direction of motion. These two helicities are singlet
multiplets of the !-dimensional rotations that leave unchanged the
direction of a particle traveling at the speed of light. The group of 1-
dimensional rotations is the phase symmetry SO(2), and this method
for identifying the physical degrees of freedom is called the “light-
cone classification.” However, the situation is a little more com-

plicated in five dimensions, where there are three directions or-
thogonat to the direction of the particle. Then the helicity symmetry
becomes SO(3) (instead of SO(2)), and the spin multiplets in five
dimensions group together sets of 4-dimensional helicity. For exam-
ple, the graviton in five dimensions has five components. The SO(2)
of four dimensions is contained in this SO(3) symmetry, and the 4-
dimensional helicities of the 5-dimensional graviton are 2, 1, 0, —1,
and —2.

Quite generally, the light-cone symmetry that leaves the direction
of motion of a massless particle unchanged in D dimensions is
SO(D — 2), and the D-dimensional helicity corresponds to the multi-
plets (or representations) of SO(D — 2). For example, the graviton
has D(D — 3)/2 independent degrees of freedom in D dimensions;
thus the graviton in eleven dimensions belongs to a 44-component
representation of SO(9). The SO(2) of the 4-dimensional helicity is
inside the SO(9), so the forty-four components of the graviton in
eleven dimensions carry labels of 4-dimensional helicity as follows:
one component of helicity 2, seven of helicity {, twenty-eight of
helicity 0, seven of helicity —1 and one of helicity —2. (The compo-
nents of the graviton in eleven dimensions then correspond to the
graviton, seven massless vector bosons, and twenty-eight scalars in
four dimensions.)

The analysis for massive particles in D dimensions proceeds in
exactly the same way, except the helicity symmetry is the one that
leaves a resting particle at rest. Thus, the massive helicity symmetry
is SO(D — 1). (For example, SO(3) describes the spin of a massive
particle in ordinary 4-dimensional space-time.) These results are
summarized in Fig. 5 of the main text.

unify all known interactions.

[t turns out that the 4-dimensional fields
implied by the 11-dimensional gravitational
ield resemble the solution to the 5-dimen-

dimensions.
Unfortunately,

time symmetries of gravity

this

in eleven not by enlarging the space but rather by
enlarging the symmetry. The local Poincaré
symmetry of Einstein’s gravity implies the

massless spin-2 graviton; our present goal is

11-dimensional

ional Kaluza-Klein case, except that the
ravitational ficld now corresponds to many
ore 4-dimensional ficlds. There are meth-
ds of dimensional reduction for group
anifolds and coset spaces, and the zero
odes include a vector boson for each sym-
etry of the extra dimensions. Thus, in the
4 + 7)-dimensional cxample mentioned
bove, there is a complete set of vector bos-
ns for the standard model. At first sight this
odel appears to provide an attractive uni-
ication of all the interactions of the standard
odel; it explains the origins of the local
ymmetries of the standard model as space-

Kaluza-Klein theory has some shortcomings.
Even with the complete freedom consistent
with quantum field theory to add fermions, it
cannot account for the parity violation seen
in the weak ncutral-current interactions of
the electron. Witten' has presented very gen-
eral arguments that no Il-dimensional
Kaluza-Klein theory will ever give the cor-
rect electroweak theory.

Supersymmetry and Gravity in
Four Dimensions

We return from our excursion into higher
dimensions and discuss extending gravity

to extend the Poincaré symmetry (without
increasing the number of dimensions) so that
additional fields are grouped together with
the graviton. However, this cannot be
achieved by an ordinary (Lie group) sym-
metry: the graviton is the only known
elementary spin-2 field, and the local sym-
metrics of the standard model are internal
symmetries that group together particles of
the same spin. Moreover, gravity has an
exceptionally weak interaction, so if the
graviton carries quantum numbers of sym-
metries similar to those of the standard
model, it will interact too strongly. We can
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accommodate these facts if the graviton is a
singlet under the internal symmetry, but then
its multiplet in this new symmetry must
include particles of other spins. Supersym-
metry? is capable of fulfilling this require-
ment.

Four-Dimensional Supersymmetry. Super-
symmetry is an extension of the Poincaré
symmetry, which includes the six Lorentz
generators M, and four translations P,. The
Poincaré generators are boson operators, so
they can change the spin components of a
massive field but not the total spin. The
simplest version of supersymmetry adds fer-
mionic generators (), to the Poincaré gen-
erators; Q, transforms like a spin-%: field
under Lorentz transformations. (The index a
is a spinor index.) To satisfy the Pauli ex-
clusion principle, fermtonic operators in
quantum field theory always satisfy anticom-
mutation relations, and the supersymmetry
generators are no exception. In the algebra
the supersymmetry generators (), anticom-
mute to yield a translation

[Qu Op) = vt . )

where P, is the energy-momentum 4-vector
and the yhg are matrix elements of the Dirac
Y matrices.

The significance of the fermionic gen-
erators is that they change the spin of a state
or field by +%; that is, supersymmetry uni-
fies bosons and fermions. A multiplet of
“simple” supersymmetry (a supersymmetry
with one fermionic generator) in four
dimensions is a pair of particles with spins J
and J—'%; the supersymmetry generators
transform bosonic fields into fermionic
fields and vice versa. The boson and fermion
components are equal in number in all super-
symmetry multiplets relevant to particle the-
ories.

We can construct larger supersymmetries
by adding more fermionic generators to the
Poincaré symmetry. “N-extended” super-
symmetry has N fermionic generators. By
applying each generator to the state of spin J,
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we can lower the helicity up to N times.
Thus, simple supersymmetry, which lowers
the helicity just once, is called N = 1 super-
symmetry. N = 2 supersymmetry can lower
the helicity twice, and the N = 2 multiplets
have spins J, J— ', and J— 1. There are
twice as many J — '~ states as Jor J— 1, so
that there are equal numbers of fermionic
and bosonic states. The N = 2 multiplet is
made up of two N = 1 multiplets: one with
spins J and J — 2 and the other with spins
J—tY%andJ— 1.

In principle, this construction can be ex-
tended to any N, but in quantum field theory
there appears to be a limit. There are serious
difficulties in constructing simple field the-
ories with spin 5/2 or higher. The largest
extension with spin 2orlesshas N=8. In N
= § extended supersymmetry, there is one
state with helicity of 2, eight with 3/2,
twenty-eight with |, fifty-six with 1/2, sev-
enty with 0, fifty-six with —1/2, twenty-eight
with —1, eight with 3/2 and one with —2,
This multiplet with 256 states will play an
important role in the supersymmetric the-
ories of gravity or supergravity discussed
below. Table 2 shows the states of N-ex-
tended supersymmetry.

Theories with Supersymmetry. Rather or-
dinary-looking Lagrangians can have super-
symmetry. For example, there is a La-
grangian with simple global supersymmetry
in four dimensions with a single Majorana
fermion, which has one component with
helicity +1/2, one with helicity —1/2, and
two spinless particles. Thus, there are two
bosonic and two fermionic degrees of free-
dom. The supersymmetry not only requires
the presence of both fermions and bosons in
the Lagrangian but also restricts the types of
interactions, requires that the mass
parameters in the multiplet be equal, and
relates some other parameters in the La-
grangian that would otherwise be un-
constrained.

The model just described, the Wess-
Zumino model,? is so simple that it can be
written down easily in conventional field
notation. However, more realistic supersym-

metric Lagrangians take pages to write down.
We will avoid this enormous complication
and limit our discussion to the spectra of
particles in the various theories.

Although supersymmetry may be an exact
symmetry of the Lagrangian, it does not ap-
pear to be a symmetry of the world because
the known elementary particles do not have
supersymmetric partners. (The photon and a
neutrino cannot form a supermultiplet be-
cause their low-energy interactions are dif-
ferent.) However, like ordinary symmetries,
the supersymmetries of the Lagrangian do
not have to be supersymmetries of the
vacuum: supersymmetry can be spon-
taneously broken. The low-energy predic-
tions of spontancously broken supersym-
metric models are discussed in “Supersym-
metry at 100 GeV.”

Local Supersymmetry and Supergravity.
There is a curious gap in the spectrum of the]
spin values of the known elementary parti+
cles. Almost all spins less than or equal to
have significant roles in particle theory
spin-1 vector bosons are related to the loca
internal symmetries; the spin-2 gravito
mediates the gravitational interaction; low
mass spin-%2 fermions dominate low-energ
phenomenology; and spinless fields provid
the mechanism for spontaneous symmet
breaking. All these fields are crucial to th
standard model, although there seems to b
no relation among the fields of different spin
A spin of 3/2 is not required phenomenologi
cally and is missing from the list. If th
supersymmetry is made local, the resultin
theory is supergravity, and the spin-2 gravi
ton is accompanied by a “gravitino” wit
spin 3/2.

Local supersymmetry can be imposed on
theory in a fashion formally similar to th|
local symmetries of the standard model, e
cept for the additional complications due t
the fact that supersymmetry is a space-ti
symmetry. Extra gauge fields are required
compensate for derivatives of the spac
time-dependent parameters, so, just as f¢
ordinary symmetries, there is a gauge partic
corresponding to each independent supe
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Table 2

The fields of N-extended supergravity in four dimensions. Shown are the
number of states of each helicity for each possible supermultiplet containing a
graviton but with spin < 2. Simple supergravity (N = 1) has a graviton and
gravitino. N = 4 supergravity is the simplest theory with spinless particles.
The overlap of the multiplets with the largest (+2) and smallest (—2) helicities
gives rise to large additional symmetries in supergravity. N = 7 and N =8
supergravities have the same list of helicities because particle-antiparticle
symmetry implies that the /N =7 theory must have two multiplets (as for N <
7), whereas N = 8 is the first and last case for which particle-antiparticle
symmetry can be satisfied by a single multiplet.

N
Helicity 1 2 3 4 5 6 Tor8
2 i i i 1 1 1 1
3/2 1 2 3 4 5 6
1 1 3 6 10 16 28
1/2 1 4 11 26 56
0 2 10 30 70
—-1,2 ! 4 11 26 56
-1 1 3 6 10 16 28
-3/2 1 2 4 5 6
-2 1 1 1 1 I 1 1
Total 4 8 16 32 64 128 256

ymmetry transformation. However, the
auge particles associated with the supersym-
etry generators must be fermions. Just as
he graviton has spin 2 and is associated with
he local translational symmetry, the gravi-
ino has spin 3/2 and gauges the local super-
ymmetry. The graviton and gravitino form
simple (N = 1) supersymmetry multiplet.
his theory is called simple supergravity and
s interesting because it succeeds in unifying
he graviton with another field.

The Lagrangian of simple supergravity? is
n extension of Einstein’s Lagrangian, and
ne recovers Einstein’s theory when the
ravitational interactions of the gravitino are
nored. This model must be generalized to a
ore realistic theory with vector bosons,

spin-Y2 fermions, and spinless fields to be of
much use in particle theory.

The generalization is to Lagrangians with
extended local supersymmetry, where the
largest spin is 2. The extension is extremely
complicated. Nevertheless, without much
work we can surmise some features of the
extended theory. Table 2 shows the spectrum
of particles in N-extended supergravity.

We start here with the larg:st extended
supersymmetry and investigate whether it
includes the electroweak and strong interac-
tions. In N = 8 extended supergravity the
spectrum is just the N = 8§ supersymmetric
multiplet of 256 helicity states discussed
before. The massless particles formed from
these states include one graviton, eight gravi-

tinos, twenty-eight vector bosons, fifty-six
fermions, and seventy spinless fields.

N =8 supergravity® is an intriguing theory.
(Actually, several different N = 8 super-
gravity Lagrangians can be constructed.) It
has a remarkable set of internal symmetries,
and the choice of theory depends on which of
these symmetries have gauge particles as-
sociated with them. Nevertheless, super-
gravity theories are highly constrained and
we can look for the standard model in each.
We single out one of the most promising
versions of the theory, describe its spectrum,
and then indicate how close it comes to
unifying the electroweak, strong, and gravita-
tional interactions.

In the N = 8 ‘supergravity of de Wit-
Nicolai theory® the twenty-eight vector bos-
ons gauge an SO(8) symmetry found by
Cremmer and Julia.® Since the standard
model needs just twelve vector bosons,
twenty-eight would appear to be plenty. In
the fermion sector, the eight gravitinos must
have fairly large masses in order to have
escaped detection. Thus, the local supersym-
metry must be broken, and the gravitinos
acquire masses by absorbing eight spin-'2
fermions. This leaves 56 —"8 = 48 spin-i2
fermion fields. For the quarks and leptons in
the standard model, we need forty-five fields,
so this number also is sufficient.

The next question is whether the quantum
numbers of SO(8) correspond to the e¢lec-
troweak and strong quantum numbers and
the spin-Y2 fermions to quarks and leptons.
This is where the problems start: if we
separate an SU(3) out of the SO(8) for QCD,
then the only other independent ‘interactions
are two local phase symmetries of U(1) X
U(1), which is not large enough to include
the SU(2) X U(1) of the electroweak theory.
The rest of the SO(8) currents mix the SU(3)
and the two U(1)’s. Moreover, many of the
fifty-six spin-*: fermion states (or forty-eight
if the gravitinos are massive) have the wrong
SU(3) quantum numbers to be quarks and
leptons.” Finally, even if the quantum
numbers for QCD were right and the elec-
troweak local symmetry were present, the
weak interactions could still not be ac-
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counted for. No mechanism in this theory
can guarantee the almost purely axial weak
neutral current of the electron. Thus this
- interpretation of N = 8 supergravity cannot
be the ultimate theory. Nevertheless, thisisa
model of unification, although it gave the
wrong sets of interactions and particles.

Perhaps the 256 fields do not correspond
directly to the observable particles, but we
need a more sophisticated analysis to find
them. For example, there is a “hidden” local
SU(8) symmetry, independent of the gauged
SO(8) mentioned above, that could easily
contain the electroweak and strong interac-
tions. It is hidden in the sense that the La-
grangian does not contain the kinetic energy
terms for the sixty-three vector bosons of
SU(8). These sixty-three vector bosons are
composites of the elementary supergravity
fields, and it is possible that the quantum
corrections will generate kinetic energy
terms. Then the fields in the Lagrangian do
not correspond to physical particles; instead
the photon, electron, quarks, and so on,
which look elementary on a distance scale of
present experiments, are composite. Un-
fortunately, it has not been possible to work
out a logical derivation of this kind of result
for N = 8 supergravity.?

In summary, N = 8 supergravity may be
correct, but we cannot see how the standard
model follows from the Lagrangian. The
basic fields seem rich enough in structure to
account for the known interactions, but in
detail they do not look exactly like the real
world. Whether N = 8 supergravity is the
wrong theory, or is the correct theory and we
simply do not know how to interpret it, is not
yet known.

Supergravity in Eleven
Dimensions

The apparent phenomenological short-
comings of N = 8 supergravity have been
known for some time, but its basic mathe-
matical structure is so appealing that many
theorists continue to work on it in hope that
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some variant will give the electroweak and
strong interacttons. One particularly interest-
ing development is the generalization of N =
8 supergravity in four dimensions to simple
(N = 1) supergravity in eleven dimensions.’
This generalization combines the ideas of
Kaluza-Klein theories with supersymmetry.

The formulation and dimensional reduc-
tion of simple supergravity in eleven
dimensions requires most of the ideas al-
ready described. First we find the fields of 1 1-
dimensional supergravity that correspond to
the graviton and gravitino fields in four
dimensions. Then we describe the compo-
nents of each of the 11-dimensional fields.
Finally, we use the harmonic expansion on
the extra seven dimensions to identify the
zero modes and pyrgons. For a certain
geometry of the extra dimensions, the
dimensionally reduced, 11-dimensional
supergravity without pyrgons is N = § super-
gravity in four dimensions; for other
geometries we find new theories. We now
look at each of these steps in more detail.

In constructing the 11-dimensional fields,
we begin by recalling that the helicity sym-
metry of a massless particle is SO(9) and the
spin components are classified by the multi-
plets of SO(9). The multiplets of SO(9) are
either fermionic or bosonic, which means
that all the four-dimensional helicities are
either integers (bosonic) or half-odd integers
(fermionic) for all the components in a single
multiplet. The generators independent of the
SO(2) form an SO(7), which is the Lorentz
group for the extra seven dimensions. Thus,
the SO(9) multiplets can be expressed in
terms of a sum of multiplets of SO(7) X
SO(2), which makes it possible to reduce 11-
dimensional spin to 4-dimensional spin.

The fields of [ I-dimensional, N= [ super-
gravity must contain the graviton and gravi-
tino in four dimensions. We have already
mentioned in the sidebar that the graviton in
eleven dimensions has forty-four bosonic
components. The smallest SO(9) multiplet of
11-dimensional spin that yields a helicity of
3/2 in four dimensions for the gravitinos has
128 components, eight components with
helicity 3/2, fifty-six with 1/2, fifty-six with

—1/2, and eight with —3/2. Since by super-
symmetry the number of fermionic states is
equal to the number of bosonic states, eighty- -
four bosonic components remain. It turns
out that there is a single 1 1-dimensional spin
with eighty-four components, and it is just
the field needed to complete the N= 1 super-
symmetry multiplet in eleven dimensions.

Thus, we have recovered the 256 compo-
nents of N = 8 supergravity in terms of just
three fields in eleven dimensions (see Table
3). The Lagrangian is much simpler in eleven
dimensions than it is in four dimensions.
The three fields are related to one another by
supersymmetry transformations that are
very similar to the simple supersymmetry
transformations in four dimensions. Thus, in
many ways the 11-dimensional theory is no
more complicated than simple supergravity
in four dimensions.

The dimensional reduction of the 11-di-
mensional supergravity, where the extra
dimensions are a 7-torus, gives one version
of N = 8 supergravity in four dimensions.’ In
this case each of the components is expanded
in a sevenfold Fourier series, one series for,
each dimension just as in Eq. ! in the side-
bar, except that ny is replaced by Zn,v;. The
dimensional reduction consists of keepin
only those fields that do not depend on any|
¥;, that is, just the 4-dimensional fields cor
responding to n; = n; =...= ny; = 0. Thus,
there is one zero mode (massless field in fou
dimensions) for each component. Th
pyrgons are the 4-dimensional fields wit
any n; # 0, and these are omitted in th
dimensional reduction.

The 11-dimensional theory has a simpl
Lagrangian, whereas the 4-dimensional, N
8 Lagrangian takes pages 1o write down. I
fact the N = 8 Lagrangian was first derived
this way.® It is easy to be impressed by
formalism in which everything looks simpl
This is the first of several reasons to tak
seriously the proposal that the extr
dimensions might be physical, not just
mathematical trick.

The seven extra dimensions of the 11
dimensional theory must be wound up into
little ball in order to escape detection. Th
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Table 3

in the 11-dimensional theory.

The relation of simple (/V = 1) supergravity in eleven dimensions and N = 8
supergravity in four dimensions. The 256 components of the massless fields of
11-dimensional, N = 1 supergravity fall into three n-member multiplets of
SO(9). The members of these multiplets have definite helicities in four
dimensions. The count of helicity states is given in terms of the size of SO(7)
multiplets, where SO(7) is the Lorentz symmetry of the seven extra dimensions

4-Dimensional Helicity |

n 2 32 1 1/2 0 -1/2 -1 —3/2 -2
44 1 7 1+27 7 1
84 21 7+35 21
128 8 8+48 8+48 8
[ Total 1 8 28 56 70 56 28 8 1

case described above assumes that the little
ball is a 7-torus, which is the group manifold
made of the product of seven phase sym-
metries. As a Kaluza-Klein theory, the seven
vector bosons in the graviton (Table 3) gauge
these seven symmetries. Since the twenty-
eight vector bosons of N = 8 supergravity can
be the gauge fields for a local SO(8), it is
interesting to see if we can redo the dimen-
sional reduction so that Il-dimensional
supergravity is a Kaluza-Klein theory for
SO(8), the de Wit-Nicolai theory. Indeed,
this is possible. If the extra dimensions are
assumed to be the 7-sphere, which is the
coset space SO(8)/SO(7), the vector bosons
do gauge SO(8).'9 This is, perhaps, the ul-
timate Kaluza-Klein theory, although it does
not contain the standard model. The main
difference between the 7-torus and coset
spaces is that for coset spaces there is not
ecessarily a one-to-one correspondence be-
ween components and zero modes. Some
omponents may have several zero modes,
hile others have none (recall Fig. 5).

There are other manifolds that solve the
I-dimensional supergravity equations, al-
hough we do not describe them here. The
nternal local symmetries are just those of the

extra dimensions, and the fermions and bos-
ons are unified by supersymmetry. Thus, 11-
dimensional supergravity can be dimen-
sionally reduced to one of several different 4-
dimensional supergravity theories, and we
can search through these theories for one that
contains the standard model. Unfortunately,
they all suffer phenomenological shortcom-
ings.

Eleven-dimensional supergravity contains
an additional error. In the solution where the
seven extra dimensions are wound up in a
little ball, our 4-dimensional world gets just
as compacted: the cosmological constant is
about 120 orders of magnitude larger than is
observed experimentally.!! This is the cos-
mological constant problem at its worst. Its
solution may be a major breakthrough in the
search for unification with gravity. Mean-
while, it would appear that supergravity has
given us the worst prediction in the history of
modern physics!

Superstrings

In view of its shortcomings, supergravity
is apparently not the unified theory of all

elementary particle interactions. In many
ways it is close to solving the problem, but a
theory that is correct in all respects has not
been found. The weak interactions are not
exactly right nor is the list of spin-Y2 fer-
mions. There seems to be no good reason
that the cosmological constant should be
nearly or exactly zero as observed ex-
perimentally. The issue of the renormal-
izability of the quantum theory of gravity
also remains unsolved. Supergravity im-
proves the quantum structure of the theory
in that the unwanted infinities are not as bad
as in Einstein’s theory with matter, but
troubles still appear. Newton’s constant is a
fundamental parameter in the theory, and 4-
fermion terms similar to those in Fermi’s
weak interaction theory are still present. In ¥
= 8 supergravity, which is the best case, the
perturbation solution to the quantum field
theory is expected to break down eventually.

In spite of these difficulties we have
reasons to be optimistic that supergravity is
on the right track. It does unify gravity with
some interactions and is almost a consistent
quantum field theory. The line of generaliza-
tion followed so far has led to theories that
are enormous improvements, in a mathe-
matical sense, over Einstein’s gravity. It
would seem reasonable to look for gen-
eralizations beyond supergravity.

Superstring theories may answer some of
these questions. Just as the progress of super-
gravity was based on the systematic addition
of fields to Einstein’s gravity, superstring
theory can also be viewed in terms of the
systematic addition of fields to supergravity.
Although the formulation of superstring the-
ory looks quite different from the formula-
tion of supergravity, this may be partially
due to its historical origin.

Superstring theories were born from an
early effort to find a theory of the strong
interactions. They began as a very efficient
means of understanding the long list of
hadronic resonances. In particular, hadrons
of high spin have been identified experimen-
tally. It is interesting that sets of hadrons of
different spins but the same internal quan-
tum numbers can be grouped together into
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“Regge trajectories.” Figure 6 shows exam-
ples of Regge trajectories (plots of spin versus
mass-squared) for the first few states of the A
and N resonances; these resonances for
hadrons of different spins fall along nearly
straight lines. Such sequences appear to be
general phenomena, and so, in the "60s and
early "70s, a great effort was made to in-
corporate these results directly into a theory.
The basic idea was to build a set of hadron
amplitudes with rising Regge trajectories
that satisfied several important constraints
of quantum field theory, such as Lorentz
invariance, crossing symmetry, the correct
analytic properties, and factorization of reso-
nance-pole residues.'? Although the theory
was a prescription for calculating the
amplitudes, these constraints are true of
quantum field theory and are necessary for
the theory to make sense.

The constraints of field theory proved to
be too much for this theory of hadrons.
Something always went wrong. Some the-
ories predicted particles with imaginary mass
(tachyons) or particles produced with
negative probability (ghosts), which could
not be interpreted. Several theories had no
logical difficulties, but they did not look like
hadron theories. First of all, the consistency
requirements forced them to be in ten
dimensions rather than four. Moreover, they
predicted massless particies with a spin of 2;
no hadrons of this sort exist. These original
superstring theories did not succeed in de-
scribing hadrons in any detail, but the solu-
tion of QCD may still be similar to one of
them.

In 1974 Scherk and Schwarz'? noted that
the quantum amplitudes for the scattering of
the massless spin-2 states in the superstring
are the same as graviton-graviton scattering
in the simplest approximation of Einstein’s
theory. They then boldly proposed throwing
out the hadronic interpretation of the super-
string and reinterpreting it as a fundamental
theory of elementary particle interactions. It
was easily found that superstrings are closely
related to supergravity, since the states fall
into supersymmetry multiplets and massless
spin-2 particles are required.'4
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Fig. 6. Regge trajectories in hadron physics. The neutron and proton (N(938)) lie
on a linearly rising Regge trajectory with other isospin-": states: the N(1680) o,

spin 572, the N(2220) of spin 9,2, and so on. This fact can be interpreted as meaning
that the N(1680), for example, looks like a nucleon except that the quarks are in an
F wave rather than a P wave. Similarly the isospin-3/2 A resonance at 1232 MeV
lies on a trajectory with other isospin-3/2 states of spins 7,2, 11,2, 15/2, and so on.
The slope of the hadronic Regge trajectories is approximately (1 GeV/c?)™’. The
slope of the superstring trajectories must be much smaller

theory."® The fields of an ordinary field the
ory, such as supergravity, depend on th
space-time point at which the field i
evaluated. The fields of superstring theo
depend on paths in space-time. At each mo
ment in time, the string traces out a path i
space, and as time advances, the strin
propagates through space forming a surfac
called the “world sheet.” Strings can b
closed, like a rubber band, or open, like

broken rubber band. Theories of both type:

The theoretical development of super-
strings is not yet complete, and it is not
possible to determine whether they will fi-
nally yield the truly unified theory of all
interactions. They are the subject of intense
research today. Our plan here is to present a
qualitative description of superstrings and
then to discuss the types and particle spectra
of superstring theories.

Recent formulations of superstring the-
ories are generalizations of quantum field
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(a)

|

Fig. 7. Dynamics of closed strings. The figures show the string configurations at a
sequence of times (in two dimensions instead of ten). In Fig. 7(a) a string in motion
from times t, to t, traces out a world sheet. Figure 7(b) shows the three closed string
interaction, where one string at t, undergoes a change of shape until it pinches off at
apoint at time t, (the interaction time). At time t; two strings are propagating away

Jfrom the interaction region.

are promising, but the graviton is always
associated with closed strings.

Before analyzing the motion of a super-
string, we must return to a discussion of
space-time. Previously, we described ex-
tensions of space-time to more than four
dimensions. In all those cases coordinates

were numbers that satisfied the rules of or-
dinary arithmetic. Yet another extension of
space-time, which is useful in supergravity
and crucial in superstring theory, is the addi-
tion to space-time of ‘supercoordinates”
that do not satisfy the rules of ordinary arith-
metic, Instead, two supercoordinates 0, and

8 satisfy anticommutation relations 9,6z +
836, =0, and consequently 8,68, (with no sum
on a) = 0. Spaces with this kind of additional
coordinate are called superspaces.'®

At first encounter superspaces may appear
to be somewhat silly constructions. Never-
theless, much of the apparatus of differential
geometry of manifolds can be extended to
superspaces, so applications in physics may
exist. It is possible to define fields that de-
pend on the coordinates of a superspace.
Rather naturally, such fields are called super-
fields.

Let us apply this idea to supergravity,
which is a field theory of both fermionic and
bosonic fields. The supergravity fields can be
further unified if they are written as a smaller
number of superfields. Supergravity La-
grangians can then be written in terms of
superfields; the earlier formulations are re-
covered by expanding the superfields in a
power series in the supercoordinates. The
anticommutation rule 9,6, = 0 leads to a
finite number of ordinary fields in this ex-
pansion.

The motion of a superstring is described
by the motion of each space-time coordinate
and supercoordinate along the string; thus
the motion of the string traces out a “world
sheet” in superspace. The full theory de-
scribes the motions and interactions of
superstrings. In particular, Fig. 7 shows the
basic form of the three closed superstring
interactions. All other interactions of closed
strings can be built up out of this one kind of
interaction.!® Needless to say, the existence
of only one kind of fundamental interaction
would severely restrict theories with only
closed strings.

There is a direct connection between the
quantum-mechanical states of the string and
the elementary particle fields of the theory.
The string, whether it is closed or open, is
under tension. Whatever its source, this ten-
sion, rather than Newton’s constant, defines
the basic energy scale of the theory. To first
approximation each point on the string has a
force on it depending on this tension and the
relative displacement ‘between it and
neighboring points on the string. The prob-
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Tabled

of the extra six dimensions.

- Ground states of Type II superstrings. The 10-dimensional fields are listed according to the multxplets of the SO(8)
light-cone symmetry. The 4-dimensional fields are listed in terms of helicity and multiplets of the SO(6) Lorentz group

: , - ‘Helicity
2 3y 1 20 A ES -k
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56, 4 4420 3+70 4
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. 35, ; : 1 6 T T 1+ 20 6 1
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564 (twice) 4 4 + 20 4+20 4

lem of unravelling this infinite number of
harmonic oscillators is one of the most
famous problems of physics. The amplitudes
of the Fourier expansion of the string dis-
placement decouple the infinite set of har-
monic oscillators into independent Fourier
modes. These Fourier modes then cor-
respond to the elementary-particle fields.
The quantum-mechanical ground state of
this infinite set of oscillators corresponds to
the fields of 10-dimensional supergravity.
Ten space-time dimensions are necessary to
avoid tachyons and ghosts. The excited
modes of the superstring then correspond to
the new fields being added to supergravity.
The harmonic oscillator in three
dimensions can provide insight into the
qualitative features of the superstring. The
maximum value of the spin of a state of the
harmonic oscillator increases with the level
of the excitation. Moreover, the energy
necessary to reach a given level increases as
the spring constant is increased. The super-
string is similar. The higher the excitation of
the string, the higher are the possible spin
values (now in ten dimensions). The larger
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the string tension, the more massive are the
states of an excited level.

The consistency requirements restrict
superstring theories to two types. Type I
theories have 10-dimensional N = | super-
symmetry and include both closed and open
strings and five kinds of string interactions.
Nothing more will be said here about Type I
theories, although they are extremely inter-
esting (see Refs. 14 and 15).

Type II theories have N = 2 supersym-
metry in ten dimensions and accommodate
closed strings only. There are two N = 2
supersymmetry multiplets in ten dimen-
sions, and each corresponds to a Type Il
superstring theory. We will now describe
these two superstring theories.

The Type I1A ground-state spectrum is the
one that can be derived by dimensional re-
duction of simple supergravity in eleven
dimensions to N = 2 supergravity in ten
dimensions. Thus, if we continue to reduce
from ten to four dimensions with the
hypothesis that the extra six dimensions
form a 6-torus, we will obtain N = 8 super-
gravity in four dimensions. The superstring

theory adds both pyrgons and Regge recur-
rences to the 256 N = 8 supergravity fields,
but it has been possible (and often simpler)
to investigate several aspects of supergravity
directly from the superstring theory.

The classification of the excited 10-dimen-
sional string states (or elementary fields of
the theory) is complicated by the description
of spin in ten dimensions. However, the
analysis does not differ conceptually from
the analysis of spin for 11-dimensional
supergravity. The massless states, which
form the ground state of the superstring, are
classified by multiplets of SO(8), and the
excitations of the string are massive fields in
ten dimensions that belong to multiplets of
SO(9). The ground-state fields of the Type
ITA superstring are found in Table 4.

The Type 1B ground-state fields cannot
be derived from 1l-dimensional super-
gravity. Instead the theory has a useful phase
symmetry in ten dimensions. The fields
listed as occurring twice in Table 4 carry
nonzero values of the quantum number as-
sociated with U(1). So far, the main applica-
tion of the U(l) symmetry has been the
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Fig. 8. The ground state and first Regge recurrence of fermionic states in the 10-
dimensional Type IIB superstring theory. There are a total of 256 fermionic and
bosonic states in the ground state. (The 56, contains the gravitino.) The first
excited states contain 65,536 component fields. Half of these are fermions. (Each
representation of the fermions shown above appears twice.)

derivation of the equations of motion for the
ground-state fields.'” It will certainly have a
crucial role in the future understanding of
Type IIB superstrings.

The quantum-mechanical excitations of
the superstring correspond to the Regge re-
currences, which are massive in ten
dimensions; they belong to multiplets of
SO(9). Thus, it is possible to fill in a diagram
similar to Fig. 6, although the huge number
of states makes the results look complicated.
We give a few results to illustrate the
method.

The sets of Regge recurrences in Type IIA
and IIB are identical. In Figure 8 we show the
first recurrence of the fermion trajectories.
(Note that only one-half of the 32,768 fer-

mionic states of this mode are shown. The
boson states are even messier.) The first ex-
cited level has a total of 65,536 states, and the
next two excited levels have 5,308,416 and
235,929,600 states, respectively, counting
both fermions and bosons. (Particle
physicists seem to show little embarrassment
these days over adding a few fields to a
theory!)

The component fields in ten dimensions
can now be expanded into 4-dimensional
fields as was done in supergravity. Besides
the zero modes and pyrgons associated with
the ground states, there will be infinite lad-
ders of pyrgon fields associated with each of
the fields of the excited levels of the super-
string.

The zero modes in four dimensions have
been investigated only for the 6-torus; in this
case all the zero modes come from the
ground states. There is one zero mode for
each component field, since the dimensional
reduction is done as a 6-dimensional Fourier
series on the 6-torus. The answers for other
geometries are not yet known. It may be that
many more fields become zero modes (or
have nearly zero mass) in four dimensions
when the dimensional reduction is studied
for other spaces. An important problem is
the analysis of superstrings on curved spaces,
which has not yet been definitively studied.

Although not much progress has been
made toward understanding the phenom-
enology of these superstring theories, there
has been some formal progress. The theory
described here may be a quantum theory of
gravity. (It may take all those new fields to
obtain a renormalizable theory.) Although
local symmetries can be ruined by anoma-
lies, Type II (and several Type I) superstrings
satisfy the constraints. Also, the one-loop
calculation is finite; there are no candidates
for counter terms, so the theory may be
finite. Of course, this promising result needs
support from higher order calculations.

These results give some encouragement
that superstrings may solve some long-stand-
ing problems in particle theory; whether they
will lead to the ultimate unification of all
interactions remains to be seen.

Postscript

The search for a unified theory may be
likened to an old geography problem. Co-
lumbus sailed westward to reach India be-
lieving the world had no edge. By analogy, we
are searching for a unified theory at shorter
and shorter distance scales believing the
microworld has no edge. Perhaps we are
wrong and space-time is not continuous. Or
perhaps we are only partly wrong, like Co-
lumbus, and will discover something new,
but something consistent with what we al-
ready know. Then again, we may finally be
right on course to a theory that unifies all
Nature’s interactions. l
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Supersymmetr

upersymmetry is a symrnetry that connects particles of integral and half-integral spin
Invented about ten years ago by physicists in Europe and the Soviet Union, supersymmet
was immediately recognized as having amazing dynamical properties. In particular
this symmetry provides a rational framework for unifying a// the known forces betwee
elementary particles—the strong, weak, electromagnetic, and gravitational. Indeed, i
may also unify the separate concepts of matter and force into one comprehensiv{
framework. '

In the supersymmetric world depicted here, each boson pairs with a fermion partne
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There are two types of symmetries in
nature: external (or space-time) symmetries
and internal symmetries. Examples of inter-
nal symmetries are the symmetry of isotopic
spin that identifies related energy levels of
the nucleons (protons and neutrons) and the
more encompassing SU(3) X SU(2) X U(1)
symmetry of the standard model (see “Par-
ticle Physics and the Standard Model™).
Operations with these symmetries do not
change the space-time properties of a par-
ticle.

External symmetries include translation
invariance and invariance under the Lorentz
transformations. Lorentz transformations,
in turn, include rotations as well as the
special Lorentz transformations, that is, a
“boost” or a change in the velocity of the
frame of reference.

Each symmetry defines a particular opera-
tion that does not affect the result of any
experiment. An example of a spatial transla-
tion is to, say, move our laboratory (ac-
celerators and all) from Chicago to New
Mexico. We are, of course, not surprised that
the result of any experiment is unaffected by
the move, and we say that our system is
translationally invariant. Rotational in-
variance is similarly defined with respect to
rotating our apparatus about any axis. In-
variance under a special Lorentz transforma-
tion corresponds to finding our results un-
changed when our laboratory, at rest in our
reference frame, is replaced by one moving at
a constant velocity.

Corresponding to each symmetry opera-
tion is a quantity that is conserved. Energy
and momentum are conserved because of
time and space-translational invariance, re-
spectively. The energy of a particle at rest is
its mass (E = mc?2). Mass is thus an intrinsic
property of a particle that is conserved be-
cause of invariance of our system under
space-time translations.

Spin. Angular momentum conservation is a
result of Lorentz invariance (both rotational
and special). Orbital angular momentum re-
fers to the angular momentum of a particle in
motion, whereas the intrinsic angular

100

momentum of a particle (remaining even at
rest) is called spin. (Particle spin is an ex-
ternal symmetry, whereas isotopic spin,
which is not based on Lorentz invariance, is
not.)

In quantum mechanics spin comes in inte-
gral or half-integral multiples of a fundamen-
tal unit A (A = h/2n where h is Planck’s
constant). (Orbital angular momentum only
comes in integral multiples of #.) Particles
with integral values of spin (0, 4, 2#, .. .) are
called bosons, and those with half-integral

spins (h/2, 3h/2, 5h/2,...) are called fer-

mions. Photons (spin 1), gravitons (spin 2),
and pions (spin 0) are examples of bosons.
Electrons, neutrinos, quarks, protons, and
neutrons—the particles that make up or-
dinary matter—are all spin-2 fermions.

The conservation laws, such as those of
energy, momentum, or angular momentum,
are very useful concepts in physics. The fol-
lowing example dealing with spin and the
conservation of angular momentum
provides one small bit of insight into their
utility.

In the process of beta decay, a neutron
decays into a proton, an electron, and an
antineutrino. The antineutrino is massless
(or very close to being massless), has no
charge, and interacts only very weakly with
other particles. In short, it is practically in-
visible, and for many years beta decay was
thought to be simply

n—pt+e .

However, angular momentum is not con-
served in this process since it is not possible
for the initial angular momentum (spin 1/2
for the neutron) to equal the final total
angular momentum (spin 1/2 for the proton
+ spin 1/2 for the electron &+ an integral value
for the orbital angular momentum). As a
result, W, Pauli predicted that the neutrino
must exist because its half-integral spin
restores conservation of angular momentum
to beta decay.

There is a dramatic difference between the
behavior of the two groups of spin-classified
particles, the bosons and the fermions. This

difference is clarified in the so-called spin-
statistics theorem that states that bosons
must satisfy commutation relations (the
quantum mechanical wave function is sym-
metric under the interchange of identical
bosons) and that fermions must satisfy anti-
commutation relations (antisymmetric wave
functions). The ramification of this simple
statement is that an indefinite number of
bosons can exist in thp same place at the
same time, whereas only one fermion can be
in any given place at a given time (Fig. 1).
Hence “matter” (for example, atoms) is
made of fermions. Clearly, if you can’t put
more than one in any given place at a time,
then they must take up space. If they are also
observable in some way, then this is exactly
our concept of matter. Bosons, on the other
hand, are associated with “forces.” For ex-
ample, a large number of photons in the
same place form a macroscopically ob-
servable electromagnetic field that affects
charged particles.

Supersymmetry. The fundamental prop-
erty of supersymmetry is that it is a space-
time symmetry. A supersymmetry operation
alters particle spin in half-integral jumps,
changing bosons into fermions and vice
versa. Thus supersymmetry is the first sym-
metry that can unify matter and force, the
basic attributes of nature.

If supersymmetry is an exact symmetry in
nature, then for every boson of a given mass
there exists a fermion of the same mass and
vice versa; for example, for the electron there
should be a scalar electron (selectron), for the
neutrino, a scalar neutrino (sneutrino), for
quarks, scalar quarks (squarks), and so forth.
Since no such degeneracies have been ob-
served, supersymmetry cannot be an cxact
symmetry of nature. However, it might be a
symmetry that is inexact or broken. If so, it
can be broken in either of two inequivalent
ways: explicit supersymmetry breaking in
which the Lagrangian contains explicit terms
that are not supersymmetric, or spontaneous
supersymmetry breaking in which the La-
grangian is supersymmetric but the vacuum
is not (spontaneous symmetry breaking is
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(a)

N
r
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Fig. 1. (a) An example of a symmetric wave function for a pair of bosons and (b) an
antisymmetric wave function for a pair of fermions, where the vector r represents
the distance between each pair of identical particles. Because the boson wave
function is symmetric with respect to exchange (g (r) = \yg(—1)), there can be a
nonzero probablity (y}) for two bosons to occupy the same position in space (r =
0), whereas for the asymmetric fermion wave function (Y (r) = —yp (—1)) the
probability (y%) of two fermions occupying the same position in space must be

zero.

explained in Notes 3 and 6 of “Lecture
Notes—From Simple Field Theories to the
Standard Model”). Either way will lift the
boson-fermion degeneracy, but the latter way
will introduce (in a somewhat analogous way
to the Higgs boson of weak-interaction sym-
metry breaking) a new particle, the Gold-
stone fermion. (We develop mathematically
some of the ideas of this paragraph in
“Supersymmetry and Quantum Mechan-
ics™.)

A question of extreme importance is the
scale of supersymmetry breaking. This scale
can be characterized in terms of the so-called
supergap, the mass splitting between fer-
mions and their bosonic partners (8% = M3 —
MB3). Does one expect this scale to be of the
order of the weak scale (~ 100 GeV), or is it
much larger? We will discuss the first
possiblity at length because if supersym-
metry is broken on a scale of order 100 GeV

there are many predictions that can be veri-
fied in the next generation of high-energy
accelerators. The second possibility would
not necessarily lead to any new low-energy
consequences.

We will also discuss the role gravity has
played in the description of low-energy
supersymmetry. This connection betweeen
physics at the largest mass scale in nature
(the Planck scale: My = (hc/Gn)'? = 1.2 X
10" GeV/c?, where Gy is Newton’s gravita-
tional constant) and physics at the low
energies of the weak scale (M =~ 83 GeV/c?
where My is the mass of the W boson re-
sponsible for weak interactions) is both
novel and exciting.

Motivations. Why would one consider
supersymmetry to start with?

First, supersymmetry is the largest
possible symmetry of nature that can com-

bine internal symmetries and space-time
symmetries in a nontrivial way. This com-
bination is not a necessary feature of super-
symmetry (in fact, it is accomplished by ex-
tending the algebra of Eqs. 2 and 3 in “Super-
symmetry and Quantum Mechanics™ to in-
clude more supersymmetry generators and
internal symmetry generators). However, an
important consequence of such an extension
might be that bosons and fermions in dif-
ferent representations of an internal sym-
metry group are related. For example, quarks
(fermions) are in triplets in the strong-inter-
action group SU(3), whereas the gluons (bos-
ons) are in octets. Perhaps they are all related
in an extended supersymmetry, thus provid-
ing a unified description of quarks and their
forces.

Second, supersymmetry can provide a the-
ory of gravity. If supersymmetry is global,
then a given supersymmetry rotation must
be the same over all space-time. However, if
supersymmetry is local, the system is in-
variant under a supersymmetry rotation that
may be arbitrarily different at every point.
Because the various generators (supersym-
metry charges, four-momentum transla-
tional generators, and Lorentz generators for
both rotations and boosts) satisfy a common
algebra of commutation and anticommuta-
tion relations, consistency requires that all
the symmetries are local. (In fact, the anti-
commutator of two supersymmetry gen-
erators is a translation generator.) Thus dif-
ferent points in space-time can transform in
different ways; put simply, this can amount
to acceleration between points, which, in
turn, is equivalent to gravity. In fact, the
theory of local translations and Lorentz
transformations is just general relativity, that
is, Einstein’s theory of gravity, and a super-
symmetric theory of gravity is called super-
gravity. It is just the theory invariant under
local supersymmetry. Thus, supersymmetry
allows for a possible unification of all of
nature’s particles and their interactions.

These two motivations were realized quite
soon after the advent of supersymmetry.
They are possibilities that unfortunately
have not yet led to any reasonable predic-

continued on page 106
101



Supersymmetry
in

Quantum

basic concepts of supersymmetry. I will do this by showing an
analogy between the quantum-mechanical harmonic os-
cillator and a bosonic field and a further analogy between the
quantum-mechanical spin-#2 particle and a fermionic field. One
result of combining the two resulting fields will be to show that a
“tower” of degeneracies between the states for bosons and fermions is
a natural feature of even the simplest of supersymmetry theories.
A supersymmetry operation changes bosons into fermions and
vice versa, which can be represented schematically with the-operators
0} and Q. and the equations

I intend to develop here some of the algebra pertinent to the

Q! |boson) = |fermion),
and M

Qylfermion) = |boson), .

In the simplest version of supersymmetry, there are four such
operators or generators of supersymmetry (Q, and the Hermitian
conjugate Qf with @ = 1, 2). Mathematically, the generators are
Lorentz spinors satisfying fermionic anticommutation relations

{ ;’ QB} = P" (cu)aﬂ ’ (2)

where p* is the energy-momentum four-vector (?° = H, p’ = three-
momentum) and the o, are two-by-two matrices that include the
Pauli spin matrices ¢’ (0, = (1, ¢') where / = 1, 2, 3). Equation 2
represents the unusual feature of this symmetry: the supersymmetry
operators combine to generate translation in space and time. For
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echanics

example, the operation of changing a fermion to a boson and back
again results in changing the position of the fermion.
1f supersymmetry is an invariance of nature, then

[H, Q}=0, 3

that is, Q, commutes with the Hamiltonian H of the universe. Also,
in this case, the vacuum is a supersymmetric singlet (Qgfvac) = 0).

Equations 1 through 3 are the basic defining equations of super-
symmetry. In the form given, however, the supersymmetry is solely
an external.or space-time symmetry (a supersymmetry operation
changes particle spin without altering any of the particle’s internal
symmetries). An extended supersymmetry that connects external and
internal symmetries can be constructed by expanding the number of
operators-of Eq. 2. However, for our purposes, we need not consider
that complication.

The Harmonic Oscillator: In order to illustrate the consequences
of Egs. 1 through 3, we first need to review the guantum-mechanical
treatment of the harmonic oscillator,

The Hamiltonian for this system is

Hoe =5 (9 + 0%P), @

where p and g are, respectively, the momentum and position
coordinates of a nonrelativistic particle with unit mass and a 2n/e@
period of oscillation. The coordinates satisfy the quantum-mechani-
cal commutation relation
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(o, 4)=(wq —~qp) =—ih . (5

The well-known-solution to:-the harmonic oscillator (the set of
eigenstates and eigenvalues of H,) is most conveniently expressed
in terms of the so-called raising and lowering operators, atand g
respectively, which are defined as

1
a' = ——— (p+ ing)

V2oh
and (6

a

= \75-%)-—5 (p—ing),

and which satisfy the commutation relation

la,af]=1. N
In terms of these operators, the Hamiltonian becomes

Hoe =ho(ala+12), 8)
with eigenstates

i) = Ny(a')"|0), 9

where N, is a normalization factor and |0} is the ground state
satisfying

aj0)=10

and (10)
{00)y=1.

It is easy to show that

a'lny=Vn+1|n+1)

and an

amy=Vn [n—1),

hence the names raising operator for a' and lowering operator for .
Also note that a’a is just a counting operator since a' a [n) = n | n).
Finally, we find that

Hogo 10) = hoo(n+2) |n), 12

that 15, the states [#) have energy (n+ '2) hw .

The Bosonic Field. There is a simple analogy between the quantum
oscillator and the scalar quantum field needed to represent bosons
{scalar particles). A free scalar field is‘quite rigorously described by an
infinite set of noninteracting harmonic oscillators {a}, a,}, where p is
an index labeling the set. The Hamiltonian of the free field can be
writien as

Hooes = )I; hm,,(a; a,+ l/2) s (13)

with the summation taken over the individual oscillators p.

The ground state of the free scalar quantum field is called the
vacuum (it contains no scalar particles) and is described mathe-
matically by the conditions

ap |vac)=10
and (14)
{vacjvac)=1.

The a}; and a, operators create or annihilate, respectively, a single
scalar particle with energy Aw, (ho,= V p*+m?, where p is the
momentum carried by the created particle and m is the mass). A
scalar particle is thus anexcitation of one particular oscillator mode.

The Fermionic Field. The simple quantum-mechanical analogue of
a spin-¥: field needed to represent fermions is just a quantum particle
with spin %. This is necessary because, whereas bosons can be
represented by scalar particles satisfying commutation relations,
fermions must be represented by spin-Y; particles satisfying anticom-
mutation relations.

A spin-¥ particle has two spin states: [0} for spin down and |1} for
spin up. Once again we define raising and lowering operators, here bt
and b, respectively. These operators satisfy the anticommutation
relations

{b, bt} = (bl + btb) = 1
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Bily= j*o) L

where bt bis égain a‘couming opérator satisfying

Bl = 1) |
and - N g BUDE
BBIO)=0.

We mayy'deﬁné a Hémiltoﬁian |

sp,,,—ﬁw(bfb '/2), - (18)V

SO that states |1} and |0} will have energy equal to Y2Aw-and —ho,

respectwely
The analogy between the free quantum-mechanical fermlomc field

and the simple quantum-mechanical spin-%s particle is identical to -

the scalar field case. For example, once again we may define an

infinite set {b}, b,] of noninteracting spin-% particles labeled by the

index p. The vacuum state satisfies

by|vac)=0

and (19)
{vaclvae)= 1.

Here b}‘, and b, are identified as creation and annihilation operators,
respectively, of a single fermionic particle. Note that since {b}, b}
=0, it 15 only possible 1o create one fermionic particle in the state p.
This is the Pauli exclusion principle.
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¢ Supersymmetry. Let-us now const

{‘degrees of freedom tat and a) and
freedom (b* and b) We deﬁne the a

0= ;;?{b(hg;),'/z

Q’r =a bi( h@)l/z o

Itisithen easy to vférify that

{Qt Q} Hosc + Hspm
: = hm(a*a + '),
and

quamum-mechamcal system thal

Equations 21 and 22 are the direct analogues of Egs. 2 and
respecnvely We see that the anucommutmg charges O combine. 0
form the génerator of time translation, namely; the Hamiltonian:
The ground state of this system is the state |0)o [0 O) whe
both the oscillator and the spin-% deprees of free
energy state. This state isa unique one; satisfying

0/0,0)= Q'0,0)=0. - 23

The excited states form a tower of degenerate levels (see figure) with
energy: (n +:¥)he + 2ho, where the sign. of the second term is
determined by whether the spin-%: state is |1) (plus) or |0) (minus).

The tower .of states illustrates theé boson-fermion degeneracy for
exact supersymmetry. The bosonic states |n+1,0) (called bosonic in .
the field theory analogy because they contain no fermions) have the
same energy as their fermionic partners |n,1).

Moreover, it is easy to see that the charges Q and Q' satisfy the :
relations

Qin,1y=Vn+1 {n+ 1,0)

and
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Energy States
Boson Fermion
0 10,0>
hw [1,0> 10,1>
2hw [ 2,0> 1,1>
3hw 13,0> 12,1>

. . .

The boson-fermion degeneracy for exact supersymmetry in
which the first number in |n,m) corresponds to the state for
the oscillator degree of freedom (the scalar, or bosonic,
Jield) and the second number to that for the spin-V2degree of
Jfreedom (the fermionic field).

ANr+1,0)= Vn+1 |nl), (24)

which are analogous to Eq. 1 because they represent the conversion of
a fermionic state to a bosonic state and vice versa.

The above example is a simple representation of supersymmetry in
quantum mechanics. It is, however, trivial since it describes non-
interacting bosons (oscillators) and fermions (spin-¥ particles). Non-
trivial interacting representations of supersymmetry may also be
obtained. In some of these representations it it possible to show that
the ground state is not supersymmetric even though the Hamiltonian
is. This is an example of spontaneous supersymmetry breaking.

Symmetry Breaking. If supersymmetry were an exact symmetry of
nature, then bosons and fermions would come in degenerate pairs.
Since this is not the case, the symmetry must be broken. There are
two inequivalent ways in which to do this and thus to have the
degeneracy removed.

First we may add a small symmetry breaking term 1o the Hamilto-
nian, that is, H — H 4 ¢H’, where ¢ is a small parameter and

[H,0)#0. (25)

This mechanism is called explicit symmetry breaking. Using it we can
give scalars'a massthat is larger than that of their fermionic partners,
as is observed in nature. Although this breaking mechanism may be
perfectly self-consistent (éven this is in doubt when one includes
gravity), it is totally ad hoc and lacks predictive power.

The second symmetry breaking mechanism is termed spontaneous
symmetry breaking. This mechanism is characterized by the fact that
the Hamiltonian remains supersymmetric,

[QH]=0, (26)
but the ground state does not,
Qjvac)# 0. 27

Supersymmetry can either be a global symmetry, such as the
rotational invariance of a ferromagnet, or a local symmetry, suchasa
phase rotation in electrodynamics. Spontancous breaking of a
global symmeltry leads to a massless Nambu-Goldstone particle. In
supersymmetry we obtain a massless fermion G, the goldstino.

Spontaneous breaking of a local symmetry, however, results in the
gauge particle becoming massive. (In the standard model, the W
bosons obtain a mass My = gV by “eating” the massless Higgs
bosons, where g is the SU(2) coupling constant and V is the vacuum
expectation value of the neutral Higgs boson.) The gauge particle of
local supersymmetry is called a gravitino. It is the spin-3/2 partner of
the graviton; that is, local supersymmetry incorporates Einstein’s
theory of gravity. When supersymmetry is spontaneously broken, the
gravitino obtains a mass

mg = GI’A% (28)

by “eating” the goldstino (here Gy is Newton’s gravitational constant
and A is the vacuum expectation of some field that spontaneously
breaks supersymmetry).

Thus, if the ideas of supersymmetry are correct, there is an
underlying symmetry connecting bosons and fermions that is “hid-
den” in nature by spontaneous symmetry breaking. W
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continued from page 101

tions. Many workers in the field are, how-
ever, still pursuing these elegant notions.

Recently a third motivation for supersym-
metry has been suggested. I shall describe the
motivation and then discuss its expected
consequences.

For many years Dirac focused attention on
the “problem of large numbers” or, more
recently, the “hierarchy problem.” There are
many extremely large numbers that appear
in physics and for which we currently have
no good understanding of their origin. One
such large number is the ratio of the gravita-
tional and weak-interaction mass scales
mentioned earlier (My/My ~ 10'7).

The gravitational force between two parti-
cles is proportional to the product of the
energy (or mass if the particles are at rest) of
the two particles times G. Thus, since Gy <
1/M?, the force between two W bosons at
rest is proportional to M3y/M% ~ 1073, This
is to be compared to the electric force be-
tween W bosons, which is proportional to o
= ¢¥(4rhc) ~ 1072 where e is the elec-
tromagnetic coupling constant. Hence gravi-
tational interactions between all known
elementary particles are, at observable
energies, at least 10°? times weaker than their
electromagnetic interactions.

The key word is observable, for if we could
imagine reaching an energy of order Mplcz,
then the gravitational interactions would be-
come quite strong. In other words, gravita-
tionally bound states can be formed, in prin-
ciple, with mass of order My ~ 10" GeV.
The Planck scale might thus be associated
with particles, as yet unobserved, that have
strong gravitational interactions.

At a somewhat lower energy, we also have
the grand unification scale (Mg ~ 10'3 GeV
or greater), another very large scale with
similar theoretical significance. New parti-
cles and interactions are expected to become
important at Mg.

In either case, should these new
phenomena exist, we are faced with the ques-
tion of why there are two such diverse scales,
My and My, (or M), in nature.

The problem is exacerbated in the context
of the standard model. In this mathematical
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Perturbation Mass Corrections

Ordinary: A, Supersymmetry: As
H l H : i
!
| i
Supersymmetry o > :
H | 27 Rotation H Y ;
!
| =
| I
Hy A
”“H =mﬁ =0 and M7=m;, 1,henA0 +As=0

Fig. 2. If A, (left) represents a perturbative mass correction for an ordinary particle
H due to the creation of a virtual photon v, then a supersymmetry rotation of the
central region of the diagram will generate a second mass correction A, (right)
involving the supersymmetric partners H and the photino ? If supersymmetry is an
exact symmetry, then the total mass correction is zero.

framework, the W boson has a nonzero mass
My because of spontaneous symmetry
breaking and the existence of the scalar par-
ticle called the Higgs boson. Moreover, the
mass of the W and the mass of the Higgs
particle must be approximately equal. Un-
fortunately scalar masses are typically ex-
tremely sensitive to the details of the theory
at very high energies. In particular, when one
calculates quantum mechanical corrections
to the Higgs mass py in perturbation theory,
one finds

ui = (uf)* + 82, (1)
where
8“2 ~a Mlzarge . (2)

In these equations uY is the zeroth order
value of the Higgs boson mass, which can be

zero, and 8y is the perturbative correction.
The parameter a is a generic coupling con-
stant connecting the low mass states of order
My and the heavy states of order M)y, that
is, the largest mass scale in the theory. For
example, some of the theorized particles with
mass My, or Mg will have electric charge and
interact with known particles. In this case, o
= ¢%/4nhc, a measure of the electromagnetic
coupling. Clearly py is naturally very large
here and not approximately equal to the
mass of the W.

Supersymmetry can ameliorate the prob-
lem because, in such theories, scalar particles
are no longer sensitive to the details at high
energies. As a result of miraculous cancella-
tions, one finds

8u? ~ a () In (Miarge) - 3

This happens in the following way (Fig. 2).
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1 The Supersymmetry Doubling of Particles l

| Table 1
Standard Model
spin-1 u\ u
quarks d] d
spin-Y v 5
leptons e

Supersymmetric Partners

(There are two other quark-lepton families similar to this one.)

spin-1
gauge bosons

spin-0 H* H~
Higgs bosons \ H° H°

Y, W, 2% ¢

?l Z spin-0
d] d squarks
( S’ b spin-0
e sleptons
o
o spm—‘/zg
Y, W*, 2% g gauginos |

aH* ;ff - spin-%2 |
HO H° ] Higgsinos

Global Supersymmetry

spin-0 G
scalar partner
I Local Supersymmetry
! spin-0 G
© scalar partner
! spin-2
| graviton g
L ]

For each ordinary mass correction, there will
be a second mass correction related to the
first by a supersymmetry rotation (the sym-
metry operation changes the virtual particles
of the ordinary correction into their cor-
responding supersymmetric partners). Al-
though each correction separately is propor-
tional to & My, the sum of the two correc-
tions is given by Eq. 3. In this case, if p§; =0,
then pgy = 0and will remain zero to all orders
in perturbation theory as long as supersym-
metry remains unbroken. Hence supersym-
metry is a symmetry that prevents scalars
from getting *‘large” masses, and one can
even imagine a limit in which scalar masses
vanish. Under these conditions we say
scalars are “naturally” light.

How then do we obtain the spontaneous

spin-'2

G (massless) Goldstino

spin-3/2

G (massive) gravitino

breaking of the weak interactions and a W
boson mass? We remarked that supersym-
metry cannot be an exact symmetry of
nature; it must be broken. Once supersym-
metry is broken, the perturbative correction
(Eq. 3) 1s replaced by

sz ~a (ll(l)l)2 ln(jwlarge) +a Ags s 4)

where Ay is the scale of supersymmetry
breaking. If supersymmetry is broken spon-
taneously, then A is not sensitive t0 Mz
and could thus have a value that is much less
than M. This correction to the Higgs
boson mass can then result in a spontancous
breaking of the weak interactions, with the
standard mechanism, at a scale of order Ay

<<Mlarge .

The Particles. We've discussed a bit of the
motivation for supersymmetry. Now let’s
describe the consequences of the minimal
supersymmetric extension of the standard
model, that is, the particles, their masses, and
their interactions.

The particle spectrum is literally doubled
(Table 1). For every spin-Y2 quark or lepton
there is a spin-0 scalar partner (squark or
slepton) with the same quantum numbers
under the SU(3) X SU(2) X U(1) gauge inter-
actions. (We show only the first family of
quarks and leptons in Table ; the other two
families include the s, ¢, b, and ¢ quarks, and,
for leptons, the muon and tau and their
assoctated neutrinos.)

The spin-1 gauge bosons (the photon v, the
weak interaction bosons W< and Z9 and
the gluons g) have spin-%: fermionic partners,
called gauginos.

Likewise, the spin-0 Higgs boson, respon-
sible for the spontaneous symmetry breaking
of the weak interaction, should have a spin-'2
fermionic partner, called a Higgsino. How-
ever, we have included two sets of weak
doublet Higgs bosons, denoted H and H,
giving a total of four Higgs bosons and four
Higgsinos. Although only one weak doublet
of Higgs bosons is required for the weak
breaking of the standard model, a consistent
supersymmetry theory requires the two sets.
As a result (unlike the standard model, which
predicts one neutral Higgs boson), supersym-
metry predicts that we should observe two
charged and three neutral Higgs bosons.

Finally, other particles, related to sym-
metry breaking and to gravity, should be
introduced. For a global supersymmetry,
these particles will be a massless spin-'2
Goldstino and its spin-0 partner. However,
in the local supersymmetry theory needed
for gravity, there will also be a graviton and
its supersymmetric partner, the gravitino.
We will discuss this point in greater detail
later, but local symmetry breaking combines
the Goldstino with the gravitino to form a
massive, rather than a massless, gravitino.

In many cases the doubling of particles
just outlined creates a supersymmetric part-
ner that is absolutely stable. Such a particle
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Fig. 3. Examples of interactions between ordinary particles
(left) and the corresponding interactions between an or-

first interaction.

dinary particle and two supersymmetric particles (right)

could, in fact, be the dominant form of mat-
ter in our universe.

The Masses. What is the expected mass for
the supersymmetric partners of the ordinary
particles? The theory, to date, does not make
any firm predictions; we can nevertheless
obtain an order-of-magnitude estimate in the

108

following manner.

Although an unbroken supersymmetry
can keep scalars massless, once supersym-
metry is broken, all scalars obtain quantum
corrections to their masses proportional to
the supersymmetry breaking scale A, that is

8“'2 ~ o Aszs , (35)

obtained by performing a supersymmetry rotation on the

which is Eq. 4 with the first negligible term
dropped. If we demand the Higgs mass p} ~
3u? to be of order M3y, then A% ~ Myy/a is at
most of order 1000 GeV. Moreover, the mass
splitting between all ordinary particles and
their supersymmetric partners is again of
order M. We thus conclude that if super-
symmetry is responsible for the large ratio
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Fig. 4. A possible interaction involving supersymmetric particles (the selectrons e
and ¢ and the photino y) that experimentally would be easily recognizable.
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Fig. 5. A process involying supersymmetric particles (a gluino g and squarks Q) that
generates two hadronic jets.

My/My, then the new particles associated
with supersymmetry will be seen in the next
generation of high-energy accelerators.

The Interactions. As a result of supersym-
metry, the entire low-energy spectrum of
particles has been doubled, the masses of the
new particles are of order My, but these
masses cannot be predicted with any better
accuracy. A reasonable person might there-
fore ask what properties, if any, can we
predict. The answer is that we know all the
interactions of the new particles with the
ordinary ones, of which several examples are
shown in Fig. 3. To get an interaction be-
tween ordinary and new particles, we can
start with an interaction between three or-
dinary particles and rotate two of these (with
a supersymmetry operation) into their super-
symmetric partners. The important point is
that as a result of supersymmetry the coupl-
ing constants remain unchanged.

Since we understand the interactions of
the new particles with the ordinary ones, we
know how to find these new objects. For
example, an electron and a positron can an-
nihilate and produce a pair of selectrons that
subsequently decay into an electron-positron
pair and two photinos (Fig. 4). This process
is easily recognizable and would be a good
signal of supersymmetry in high-energy elec-
tron-positron colliders.

Supersymmetry is also evident in the proc-
ess illustrated in Fig. 5. Here one of the three
quarks in a proton interacts with one of the
quarks in an antiproton; the interaction is
mediated by a gluino. The result is the gen-
eration of two squarks that decay into quarks
and photinos. Because quarks do not exist as
free particles, the experimenter should ob-
serve two hadronic jets (each jet is a collec-
tion of hadrons moving in the same direction
as, and as a consequence of, the initial mo-
tion of a single quark). The two photinos will
generally not interact in the detector, and
thus some of the total energy of the process
will be “missing”.

The theories we have been discussing until
now have been a minimal supersymmetric
extension of the standard model. There are,
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however, two further extrapolations that are
interesting both theoretically and phenome-
nologically. The first concerns gravity and
the second, grand unified supersymmetry
models.

Gravity. We have already remarked that
supersymmetry may be either a global or a
local symmetry. If it is a global symmetry,
the Goldstino is massless and the lightest
supersymmetric partner. However, if super-
symmetry is a local symmetry, it necessarily
includes the gravity of general relativity and
the Goldstino becomes part of a massive
gravitino (the spin-3/2 partner of the gravi-
ton) with mass

2

A
= 6
M, (6)

Mg =
With A of order My/Va or 1000 GeV, mg
is extremely small (~ 107! times the mass of
the electron).

Recently it was realized that under certain
circumstances Ag can be much larger than
My, but, at the same time, the perturbative
corrections 8’ can still satisfy the constraint
that they be of order M?%. In these special
cases, supersymmetry breaking effects van-
ish in the limit as some very large mass
diverges; that is, we obtain

A2 )2
M,

large

Su2 ~a ( )]

instead of Eq. 5. An example is already
provided by the gravitino mass mg (where
Marge = My). In fact, models have now been
constructed in which the gravitino mass is of
order M,y and sets the scale of the low-energy
supergap 8 between bosons and fermions.

In either case (an extremely small or a very
large gravitino mass), the observation of a
massive gravitino is a clear signal of local
supersymmetry in nature, that is, the non-
trivial extension of Einstein’s gravity or
supergravity.

Grand Unification. Our second extrapola-
tion of supersymmetry has to do with grand
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Fig. 6. The decay mode of the proton predicted by the minimal unification
symmetry SU(5). The expected decay products are a neutral pion n° and a positron

e’

unified theories, which provide a theo-
retically appealing unification of quarks and
leptons and their strong, weak, and elec-
tromagnetic interactions. So far there has
been one major experimental success for
grand unification and two unconfirmed
predictions.

The success has to do with the relationship
between various coupling constants. In the
minimal unification symmetry SU(5), two
independent parameters (the coupling con-
stant g and the value of the unification mass
Mg) determine the three independent coupl-
ing constants (g, g, and g’) of the standard-
model SU(3) X SU(2) X U(1) symmetry. Asa
result, we obtain one prediction, which is
typically expressed in terms of the weak-
interaction parameter:

2

giteg .

®

Sinzew =

The theory of minimal SU(5) predicts sin?6y
=0.21, whereas the experimentally observed
value is 0.22 *+ 0.01, in excellent agreement.
The two predictions of SU(5) that have
not been verified experimentally are the ex-
istence of magnetic monopoles and proton
decay. The expected abundance of magnetic
monopoles today is crucially dependent on
poorly understood processes occurring in the
first 1073% second of the history of the uni-
verse. As a result, if they are not seen, we may
ascribe the problem to our poor understand-
ing of the early universe. On the other hand,
if proton decay is not observed at the ex-
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Fig. 7. The dominant proton-decay and neutron-decay modes predicted by super-
symmetry. The expected decay products are K mesons (K" and K°) and neutrinos

v).

pected rate, then minimal SU(5) is in serious
trouble.

The dominant decay modes predicted by
minimal SU(S) for the nucleons are

p— nlet

and
n—met. )

These processes involve the exchange of a so-
called X or Y boson with mass of order Mg
(Fig. 6), so that the predicted proton lifetime
T, is

M& h
T~ —5 5 ~ 10%*2 years,
my ¢

(10)

where m,, is the proton mass.

Recent experiments, especially sensitive
to the decay modes of Eq. 9, have found 7, =
1032 years, in contradiction with the predic-
tion. Hence minimal SU(5) appears to be in
trouble. There are, of course, ways to com-
plicate minimal SU(5) so as to be consistent
with the experimental values for both sinZ0w
and proton decay. Instead of considering
such ad hoc changes, we will discuss the
unexpected consequences of making mini-
mal SU(5) globally supersymmetric. The pa-
rameter sin’Qy does not change consider-
ably, whereas Mg increases by an order of
magnitude. Hence, the good prediction for
sin?Bw remains intact while the proton life-
time, via the gauge boson exchange process
of Fig. 6, naturally increases and becomes
unobservable.

It was quickly realized, however, that
other processes in supersymmetric SU(5)
give the dominant contribution towards
proton decay (Fig. 7). The decay products
resulting from these processes would consist
of K mesons and neutrinos or muons, that is,
p— K*vyorKo%*, (11)
and so would differ from the expected decay
products of © mesons and positrons. This is
very exciting because detection of the
products of Eq. 11 not only may signal
nucleon decay but also may provide the first
signal of supersymmetry in nature. Experi-
ments now running have all seen candidate
events of this type. These events are, how-
ever, consistent with background. It may
take several more years before a signal rises
up above the background.

Experiments. An encouraging feature of the
theory is that low-energy supersymmetry can
be verified in the next ten years, possibly as
early as next year with experiments now in
progress at the CERN proton-antiproton col-
lider.

Experimenters at CERN recently dis-
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covered the W* and Z°%bosons, mediators of
the weak interactions, and produced many of
these bosons in high-energy collisions be-
tween protons and antiprotons (each with
momentum ~ 270 GeV/c). For example,
Fig. 8 shows the process for the generation of
a W~ boson, which then decays to a high-
energy electron (detectable) and a high-
energy neutrino (not detectable). A single
electron with the characteristic energy of
about 42 GeV was a clear signature for this
process.

Let us now consider some of the signatures
of supersymmetry for pp or pp colliders. A
clear signal for supersymmetry are multi-jet
events with missing energy. For example,
events containing one, two, three, or four
hadronic jets and nothing more can be inter-
preted as a signal for either squark or gluino
production (Figs. 5 and 9). A two- or four-jet
signal is canonical, but these events can look
like one- or three-jet events some fraction of
the time.

There may also be events with two jets, a
high-energy electron, and some missing
energy. This is the characteristic signature of
top quark production via W decay (Fig. 10),
and thus such events may be evidence for top
quarks. But there is also an event predicted
by Supersymmetry with the same signature,
namely, the production of a squark pair (Fig.
11). It would require many such events to
disentangle these two possibilites.

The CERN proton-antiproton collider
began taking more data in September 1984
with momentum increased to 320 GeV/c per
beam and with increased luminosity. No
clear evidence for supersymmetric partners
has been observed. As a result, the so-called
UA-1 Collaboration at CERN has put lower
limits on gluino and squark masses of ap-
proximately 60 and 80 GeV, respectively. As
of this writing it is apparent that the dis-
covery of supersymmetric partners, and per-
haps also the top quark, must wait for the
next generation of high-energy accelerators.

Hopefully, it will not be too long before we
learn whether or not the underlying structure
of the universe possesses this elegant, highly

unifying type of symmetry. R
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Fig. 8. The generation, in a high-energy proton-antiproton collision, of a W~
particle, which then decays into an electron (¢”) and an antineutrino (v).

ha g i il § : _J

th 9. 4 proton-annproton collision mvolvmg supersymmetric particles (gluinos
g, squarks q, antisquarks q, and photinos y) that generates four hadronic jets.

i

Fig. 10. Two-jet events observed by the UA-1 Collaboration at CERN can be
interpreted, as shown here, as a process involving top quark t production.
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Fig. 11. The same event discussed in Fig. 10, only here interpreted as a supersym-
metric process involving squarks and antisquarks.
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by T. Goldman and Michael Martin Nieto

The roster of elementary particles includes replicas, exact in every detail but mass,
of those that make up ordinary matter. More facts are needed to explain this

seemingly unnecessary extravagance.

he currently “standard” model of particle physics phenom-

enologically describes virtually all of our observations of

the world at the level of elementary particles (see “Particle

Physics and the Standard Model”). However, it does not
explain them with any depth. Why is SU(3)c the gauge group of the
strong force? Why is the symmetry of the electroweak force broken?
Where does gravity fit in? How can all of these forces be unified? That
is, from what viewpoint will they appear as aspects of a common,
underlying principle? These questions lead us in the directions of
supersymmetry and of grand unification, topics discussed in
“Toward a Unified Theory.”

Yet another feature of the standard model leaves particle physicists
dissatisfied: the multiple repetitions of the represgntations* of the
particles involved in the gauge interactions. By definition the adjoint
representation’ of the gauge fields must occur precisely once in a
gauge theory. However, quantum chromodynamics includes no less
than six occurrences of the color triplet representation of quarks: one
for each of the u, ¢, t, d, s, and b quarks. The u, ¢, and ¢ quarks have a
common electric charge of % and so are distinguished from the 4, s,
and b quarks, which have a common electric charge of —'. But the
quarks with a common charge are distinguished only by their dif-

ferent masses, as far as is now known. The electroweak theory
presents an even worse situation, being burdened with nine left-
chiral* quark doublets, three left-chiral lepton doublets, eighteen
right-chiral quark singlets, and three right-chiral lepton singlets (Fig.
1).

Nonetheless, some organization can be discerned. The exact sym-
metry of the strong and electromagnetic gauge interactions, together
with the nonzero masses of the quarks and charged leptons, implies
that the right-chiral quarks and charged leptons and their left-chiral
partners can be treated as single objects under these interactions. In
addition, each neutral lepton is associated with a particular charged
lepton, courtesy of the transformations induced by the weak interac-
tion. Thus, it is natural to think in terms of three quark sets (vand d, ¢
and s, and ¢ and b) and three lepton sets (¢~ and v,, &~ and v, and v~
and v,) rather than thirty-three quite repetitive representations.
Furthermore, the relative lightness of the u and d quark set and of the
e~ and v, lepton set long ago suggested to some that the quarks and
leptons are also related (quark-lepton symmetry). Subtle mathemati-
cal properties of modern gauge field theories have provided new
backing for this notion of three “quark-lepton families,” each consist-
ing of successively heavier quark and lepton sets (Table 1).

*We give a geometric definition of “representation,” using as an example the
SU(3)c triplet representation of, say, the up quark. (This triplet, the smallest
non-singlet representation of SU(3), is called the fundamental representation.)
The members of this representation (byeq, Uptue and Ugreen) correspond to the set
of three vectors directed from the origin of a two-dimensional coordinate system
to the vertices of an equilateral triangle centered at the origin. (The triangle is
usually depicted as standing on a vertex.) The “conjugate” of the triplet
representation, which contains the three anticolor varieties of the up quark with
charge —%, can be defined similarly: it corresponds to the set of three vectors
obtained by reflecting the vectors of the triplet representation through the origin.
(The vectors of the conjugate representation are directed toward the vertices of
an equilateral triangle standing on its side, like a pyramid.,) The “group
transformations” correspond to the set of operations by which any one of the
quark or antiquark vectors is transformed into any other.

YThe “adjoint” representation of SU(3)c, which contains the eight vector bosons
(the gluons), is found in the “product” of the triplet representation and its
conjugate. This product corresponds to the set of nine vectors obtained by
forming the vector sums of each member of the triplet representation with each
member of its conjugate. This sef can be decomposed into a singlet containing a
null vector (a point at the origin) and an octet, the adjoint representation,
containing two null vectors and six vectors directed from the origin to the
vertices of a regular hexagon centered at the origin. Note that the adjoint
representation is symmetric under reflection through the origin.

14 massless particle is said to be left-handed (right-handed) if the direction of
its spin vector is opposite (the same as) that of its momentum. Chirality is the
Lorentz-invariant generalization of this handedness to massive particles and is
equivalent to handedness for less particles.
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If the underlying significance of this
grouping by mass is not apparent to the
reader, neither is it to particle physicists. No
one has put forth any compelling reason for
deciding which charge % quark and which
charge —'5 quark to combine into a quark set
or for deciding which quark set and which
charged and neutral lepton set should be
combined in a quark-lepton family. Like
Mendeleev, we are in possession of what
appears to be an orderly grouping but
without a clue as to its dynamical basis. This
is one theme of ““the family problem.”

Still, we do refer to each quark and lepton
set together as a family and thus reduce the
problem to that of understanding only three
families—unless, of course, there are more
families as yet unobserved. This last is an-
other question that a successful “theory of
families” must answer. Grand unified the-
ories, supersymmetry theories, and theories
wherein quarks and leptons have a common
substructure can all accommodate quark-lep-
ton symmetry but as yet have not provided
convincing predictions as to the number of
families. (These predictions range from any
even number to an infinite spectrum.)

Such concatenations of wild ideas (how-
ever intriguing) may not be the best approach
to solving the family problem. A more con-
servative approach, emulating that leading
to the standard model, is to attack the family
problem as a separate question and to ask
directly if the different families are
dynamically related.

Here we face a formidable obstacle—a
paucity of information. A fermion from one
family has never been observed to change
into a fermion from another family. Table 2
lists some family-changing decays that have
been sought and the experimental limits on
their occurrence. True, a g~ may appear to
decay into an ¢, but, as has been experimen-
tally confirmed, it actually is transformed
into a v, and simultaneously the ¢~ and a v,
appear. Being an antiparticle, the v, carries
the opposite of whatever family quantum
numbers distinguish an ¢~ from any other
charged lepton. Thus, no net “first-famili-
ness” is created, and the “second-familiness™
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Fig. 1. The electroweak representations of the fermions of the standard model,
which comprise nine left-chiral quark doublets, eighteen right-chiral quark
singlets, three left-chiral lepton doublets, and three right-chiral lepton singlets.
The subscripts 1, b, and g denote the three color charges of the quarks, and the
subscripts R and L denote right- and left-chiral projections. The symbols &', s’, and
b’ indicate weak-interaction mass eigenstates, which, as discussed in the text, are
mixtures of the strong-interaction mass eigenstates d, s, and b. Since quantum
chromodynamics does not include the weak interaction, and hence is not concerned
with chirality, the SU(3) representations of the fermions are fewer in number: six
triplets, each containing the three color-charge varieties of one of the quarks, and
three singlets, each containing a charged lepton and its associated neutral lepton.

of the original u~ is preserved in the v,.

In spite of the lack of positive experimen-
tal results, current fashions (which are based
on the successes of the standard model) make
irresistible the temptation to assign a family
symmetry group to the three known families.
Some that have been considered include
SU(2), SU(2) X U(1), SU(3),and U(1) X U(1)
X U(1). The impoverished level of our un-
derstanding is apparent from the SU(2) case,
in which we cannot even determine whether

the three families fall into a doublet and a
singlet or simply form a triplet.

The clearest possible prediction from a
family symmetry group, analogous to
Mendeleev’s prediction of new elements and
their properties, would be the existence of
one or more additional families necessary to
complete a representation. Such a prediction
can be obtained most naturally from either of
two possibilities for the family symmetry: a
spontaneously broken local gauge symmetry



The Family Problem

Table 1

Members of the three known quark-lepton families and their masses. Each
family contains one particle from each of the four types of fermions: leptons
with an electric charge of —1 (the electron, the muon, and the tau); neutral
leptons (the electron neutrino, the muon neutrino, and the tau neutrino);
quarks with an electric charge of % (the up, charmed, and top quarks); and
quarks with an electric charge of —'3 (the down, strange, and bottom
quarks). Each family also contains the antiparticles of its members. (The
antiparticles of the charged leptons are distinguished by opposite electric
charge, those of the neutral leptons by opposite chirality, and those of the
quarks by opposite electric and color charges. For historical reasons only
the antielectron has a distinctive appellation, the positron.) Family member-
ship is determined by mass, with the first family containing the least
massive example of each type of fermion, the second containing the next
most massive, and so on. What, if any, dynamical basis underlies this
grouping by mass is not known, nor is it known whether other heavier
families exist. The members of the first family dominate the ordinary world,
whereas those of the second and third families are unstable and are found
only among the debris of collisions between members of the first family.

First Family Second Family Third Family
electron, ¢™ muon, u~ tau, v
© 0.5l MeV/c? 105.6 MeV/c? 1782 MeV/c?
] electron neutrino, v, muon neutrino, v, tau neutrino, v,
0.00002 MeV/c? (?) <0.5 MeV/c? <147 MeV/c? I
up quark, u charmed quark, ¢ top quark, ¢
=5 MeV/c? > 1500 MeV/c? = 40,000 MeV/c2 (D)
down quark, d strange quark, s bottom quark, b
=10 MeV/c? =~170 MeV/c? =4500 MeV/c?
|
i _
,’ ' f
! !
Table 2

Experimental limits on the branching ratios for some family-changing
decays. The branching ratio for a particular decay mode is defined as the
ratio of the number of decays by that mode to the total number of decays by
all modes. An experiment capable of determining a branching ratio for u* —
e*y as low as 107"% is currently in progress at Los Alamos (see “Experiments
To Test Unification Schemes”).

Branching Ratio Dominant
Decay Mode (upper bound) Decay Mode(s)
u: — ey 10710 ph— vy,
pt—etete 10712 pt— etvev,
a0 — !J-'t o+ 10~7 70— Yy
Kt — mtpte™ 1078 K*—rmtnlorputy
K, — pte® 1078 Ky — ntnn® or nPnOn®
£t — pu*e” 1073 >t — pn®

or a spontaneously broken global sym-
metry.* What follows is a brief ramble
(whose course depends little on detailed as-
sumptions) through the salient features and
implications of these two possibilities.

Family Gauge Symmetry

All of the unseen decays listed in Table 2
would be strictly forbidden if the family
gauge symmetry were an exact gauge sym-
metry as those of quantum electrodynamics
and quantum chromodynamics are widely
believed to be. Here, however, we do not
expect exactness because that would imply
the existence, contrary to experience, of an
additional fundamental force mediated by a
massless vector boson (such as a long-range
force like that of the photon or a strong force
like that of the gluons but extending to lep-
tons as well as quarks). But we can, as in the
standard model, assume a broken gauge sym-
metry.

We begin by placing one or more families
in a representation of some family gauge
symmetry group. (The correct group might
be inferred from ideas such as grand unifica-
tion or compositeness of fermions. However,
it is much more likely that, as in the case of
the standard model, this decision will best be
guided by hints from experimental observa-
tions.) Together, the group and the represen-
tation determine currents that describe inter-
actions between members of the represen-
tation. (These currents would be conserved if
the family symmetry were exact.) For exam-
ple, if the first and the second families are
placed in the representation, an electrically
neutral current describes the transformation
€« u7, just as the charged weak current of
the electroweak theory describes the trans-
formation e~ « v,. Since the other family

*In principle, we should also consider the
possibilities of a discrete symmetry or an explicit
breaking of family symmetry (probably caused by
some dynamics of a fermion substructure). How-
ever, these ideas would be radical departures from
the gauge symmetries that have proved so successful
to date. We will not pursue them here.
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members necessarily fall into the same rep-
resentation, the ¢~ < p~ current includes
contributions from interactions between
these other members (d < s, for example),
just as the charged weak current for
¢~ © v, includes contributions from p~ < v,
and T « v,

If we now allow the family symmetry to be
a local gauge symmetry, we find a “family
vector boson,” F, that couples to these cur-
rents (Fig. 2) and mediates the family-chang-
ing interactions. As in the standard model,
the coupled currents can be combined to
yield dynamical predictions such as scatter-
ing amplitudes, decay rates, and relations
between different processes.

Scale of Family Gauge Symmetry
Breaking. Weak interactions occur rel-
atively infrequently compared to elec-
tromagnetic and strong interactions because
of the large dynamical scale (approximately
100 GeV) set by the masses of the W* and
Z9 bosons that break the electroweak sym-
metry. We can interpret the extremely low
rate of family-changing interactions as being
due to an analogous but even larger
dynamical scale associated with the breaking
of a local family gauge symmetry, that is, to a
large value for the mass My of the family
vector boson. The branching-ratio limit
listed in Table 2 for the reaction K, — pu* +
e* allows us to estimate a lower bound for
Mg as follows.

Like the weak decay of muons, the K; —
pe decay proceeds through formation of a
virtual family vector boson (Fig. 3). The rate
for the decay, I, is given by

4
r= %‘%ym?(. (1)

Note that the fourth power of M appears in
Eq. 1 just as the fourth power of My does
(hiding in the square of the Fermi constant)
in the rate equation for muon decay. (Certain
chirality properties of the family interaction
could require that two of the five powers of
the kaon mass mg in Eq. 1 be replaced by the
muon mass. However, since the inferred
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value of M varies as the fourth root of this
term, the change would make little numerical
difference.) It is usual to assume that gumiy,
the family coupling constant, is comparable
in magnitude to those for the weak and elec-
tromagnetic interactions. This assumption
reflects our prejudice that family-changing
interactions may eventually be unified with
those interactions. Using Eq. 1 and the
branching-ratio limit from Table 2, we ob-
tain

Mez 10° GeV/c?. 2)

Such a large lower bound on Mg implies that
the breaking of a local family gauge sym-
metry produces interactions much weaker
than the weak interactions.

Alternatively, processes like K; — pe may
be the result of family-conserving grand uni-
fied interactions in which quarks are turned
into leptons. However, the experimental
limit on the rate of proton decay implies that
such interactions occur far less frequently
than the family-violating interactions con-
sidered here.

Experiments with neutrinos, also, indicate
a similarly large dynamical scale for the
breaking of a local family gauge symmetry. A
search for the radiative decay v, — v, + y has
yielded a lower bound on the v, lifetime of
10° (m,/MeV) seconds. If the mass of the
muon neutrino is near its experimentally
observed upper bound of 0.5 MeV/c? this
lower bound on the lifetime is greater than
the standard-model prediction of approx-
imately 10 (MeV/m,)’ seconds. Thus, some
family-conservation principle may be sup-
pressing the decay.

More definitive information is available
from neutrino-scattering experiments.
Positive pions decay overwhelmingly (10* to
1) into positive muons and muon neutrinos.
In the absence of family-changing interac-
tions, scattering of these neutrinos on nu-
clear targets should produce only negative
muons. This has been accurately confirmed:
neither positrons nor electrons appear more
frequently than permitted by the present sys-
tematic experimental uncertainty of 0.1 per-

Fig. 2. Examples of neutral family-
changing currents coupled to a family
vector boson (F). Such couplings follow
from the assumption of a local gauge
symmetry for the family symmetry.

cent. An investigation of the neutrinos from
muon decay has yielded similar results. The
decay of a positive muon produces, in addi-
tion to a positron, an electron neutrino and a
muon antineutrino. Again, in the absence of
family-changing interactions, scattering of
these neutrinos should produce only elec-
trons and positive muons, respectively. A
LAMPF experiment (E-31) has shown, with
an uncertainty of about 5 percent, that no
negative muons or positrons are produced.
The energy scale of Eq. 2 will not be

directly accessible with accelerators in the
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Fig. 3. Feynman diagram for the family-changing decay X, — w~ + ', which is
assumed to occur through formation of a virtual family vector boson (F). The K,
meson is the longer lived of two possible mixtures of the neutral kaon (K®) and its
antiparticle (K°). Neither this decay nor the equally probable decay K, — nu* + e~
has been observed experimentally; the current upper bound on the branching ratio

is 1075

foreseeable future. The Superconducting
Super Collider, which is currently being con-
sidered for construction next decade, is con-
ceived of as reaching 40,000 GeV but is
estimated to cost several billion dollars. We
cannot expect something yet an order of
magnitude more ambitious for a very long
time. Thus, further information about the
breaking of a local family gauge symmetry
will not arise from a brute force approach but

rather, as it has till now, from discriminating
searches for the needle of a rare event among
a haystack of ordinary ones. Clearly, the
larger the total number of events examined,
the more definitive is the information ob-
tained about the rate of the rare ones. For
this reason the availability of high-intensity
beams of the reacting particles is a very
important factor in the experiments that
need to be undertaken or refined, given that

they are to be carried out by creatures with
finite lifetimes!

For example, consider again the decay K
— ue. Since the rate of this decay varies
inversely as the fourth power of the mass of
the family vector boson, a value of M in the
million-GeV range implies a branching ratio
lower by four orders of magnitude than the
present limit. A search for so rare a decay
would be quite feasible at a high-intensity,
medium-energy accelerator (such as the
proposed LAMPF 1II) that is designed to
produce kaon fluxes on the order of 108 per
second. (Currently available kaon fluxes are
on the order of 10® per second.) A typical
solid angle times efficiency factor for an in-
flight decay experiment is on the order of 10
percent. Thus, 107 kaons per second could be
examined for the decay mode of interest. A
branching ratio larger than 107'2 could be
found in a one-day search, and a year-long
experiment would be sensitive down to the
107 level. Of course, we do not know with
absolute certainty whether a positive signal
will be found at any level. Nonetheless, the
need for such an observation to elucidate
family dynamics impels us to make the at-
tempt.

Positive Evidence for Family
Symmetry Breaking

Thus, despite expectations to the contrary,
we have at present no positive evidence in
any neutral process for nonconservation of a
family quantum number, that is, for family-
changing interactions mediated by exchange
of an electrically neutral vector boson such as
the F of Figs. 2 and 3. Is it possible that our
expectations are wrong—that this quantum
number is exactly conserved as are electric
charge and angular momentum? The answer
is an unequivocal NO! We have—for
quarks—positive evidence that family is a
broken symmetry. To see this, we must
examine the effect of the electroweak interac-
tion on the quark mass eigenstates defined by
the strong interaction.

We know, for instance, thata K¥ (= u +5)
decays by the weak interaction into a u* and
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a v, and also decays into a «* and a n° (Fig.
4). In quark terms this means that the u
quark and the 5 quark in the kaon are cou-
pled through a W boson. The two families
(up-down and charmed-strange) defined by
the quark mass eigenstates under the strong
interaction are mixed by the weak interac-
tion. Since the kaon decays occur in both
purely leptonic and purely hadronic chan-
nels, they are not likely 1o be due to peculiar
quark-lepton couplings. Similar evidence for
family violation is found in the decays of D
mesons, which contain charmed quarks.

Weak-interaction eigenstates 4’ and s’
may be defined in terms of the strong-inter-
action mass cigenstates d and s by

d’\ _ [ cosOc sin 8¢ d

(s’ ) B (—sin 0c cos BC) (s) » 3
where 0¢, the Cabibbo mixing angle, is ex-
perimentally found to be the angle whose
sine is 0.23 = 0.01. (The usual convention,
which entails no loss of generality, is to as-
sign all the mixing effects of the weak interac-
tion to the down and strange quarks, leaving
unchanged the up and charmed quarks.) The
fact that the mass and weak-interaction
eigenstates are different implies that a con-
served family quantum number cannot be
defined in the presence of both the strong
and the weak interactions. We can easily
show, however, that this conclusion does not
contradict the observed absence of neutral
family-violating interactions.

The weak charged-current interaction de-
scribing, say, the transformation of a &’
quark into a u quark by absorption of a W+
boson has the form

- - - - (Wt 0 d
+
(ud’ + cs" YW ™ = (u, ¢) < 0 W+) (S, ) s
4
which, after substitution of Eq. 3, becomes

(ud’ + ¢s')W+ = u(dcos B¢ + ssin B) W™+
+ ¢(—dsin 8¢+ scos 8c)W ™ . 5)

(Here we suppress details of the Lorentz
algebra.)
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Fig. 4. Feynman diagrams for the decays of a positive kaon into (a) a positive muon
and a muon neutrino and (b) a positive and a neutral pion. The ellipse with
diagonal lines represents any one of several possible pathways for production of a
positive and a neutral pion from an up quark and an antidown gquark. These decays,
in which the up-down and charmed-strange quark families are mixed by the weak
interaction (as indicated by sin 0. and cos 0.), are evidence that the family sym-

metry of quarks is a broken symmmetry.

Because of the mixing given by Eq. 3, the
statement we made near the beginning of this
article, that no family-changing decays have
been observed, must be sharpened. True, no
s’ — u decay has been seen, but, of course,
the s — u decay implied by Eq. 5 does occur.

Thus, “No family-changing decays of weak-
interaction family eigenstates have been ob-
served” is the more precise statement.

The weak neutral-current interaction de-
scribing the scattering of a d’ quark when it
absorbs a Z0 has a form like that of Eq. 4:
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- - - - 0 r
(ww+ywz%4ay(% ;0(5)
(6)

Since the Cabibbo matrix in Eq. 3 is unitary,
Eq. 6 is unchanged (except for the disap-
pearance of primes on the quarks) by sub-
stitution of Eq. 3:

(d'd" +5's"Z°=(dd +55)2°. (7)

Thus, the weak neutral-current interaction
does not change d quarks into s quarks any-
more than it changes ¢’ quarks into s” quarks.
It is only the presumed family vector boson
of mass greater than 10° GeV that may effect
such a change.

Family Symmetry Violation and
CP Violation

The combined operation of charge con-
jugation and parity reversal (CP) is, like
arity reversal alone, now known not to be
n exact symmetry of the world. An under-
tanding of CP violation and proton decay
ould be of universal importance to explain
‘big-bang” cosmology and the observed ex-
ess of matter over antimatter.

Fig. 5. Feynman diagram for a CP-violating reaction that transforms the neutral
kaon into its antiparticle. This second-order weak interaction occurs through
formation of virtual intermediate states including either a v, c, or t quark.

The generalization by Kobayashi and
Maskawa of Eq. 3 to the three-family case is
introduced in “Particle Physics and the Stan-
dard Model™; it yields a relation between
family symmetry violation and CP violation.
Although other sources of CP violation may
exist outside the standard model, this rela-
tion permits extraction of information about
violation of family symmetry from studies of
CP violation.

The phenomenon of CP violation has, so
far, been observed only in the K- K0 sys-
tem. The CP eigenstates of this system are
the sum and the difference of the K° and K°
states. The violation is exhibited as a small
tendency for the long-lived state, K , which
normally decays into three pions, to decay
into two pions (the normal decay mode of
the short-lived state, K's) with a branching
ratio of approximately 107>, This tendency
can be described by saying that the K5 and
K states differ from the sum and difference
states by a mixing of order €:

|Ks) = [K% + (1 —¢) K9
and ®)
KL= K% —(1—g) [K°.

The quark-model analysis based on the work

of Kobayashi and Maskawa and the second-
order weak interaction shown in Fig. 5
predict an additional CP-violating effect not
describable in terms of the mixing in Eq. 8;
that is, it would occur even if &€ were zero.
The effect, which is predicted to be of order
g’, where €’/ is about 1072, has not yet been
observed, but experiments sufficiently sen-
sitive are being mounted.

Both € and ¢’ are related to the Kobayashi-
Maskawa parameters that describe family
symmetry violation. This guarantees that if
the value of ¢’ is found to be in the expected
range, higher precision experiments will be
needed to determine its exact value . If no
positive result is obtained in the present
round of experiments, it will be even more
important to search for still smaller values.
In either case intense kaon beams are highly
desirable since the durations of such experi-
ments are approaching the upper limit of
reasonability.

Of course, in principle, CP violation can
be studied in other quark systems involving
the heavier ¢, b, and 1 quarks. However, these
are produced roughly 10® times less
copiously than are kaons, and the CP-violat-
ing effects are not expected to be as large as in
the case of kaons.

Global Family Symmetry

In our discussion of family-violating
processes like K — pe, we have, so far,
assumed the existence of a massive gauge
vector boson reflecting family dynamics. The
general theorem, due to Goldstone, offers
two mutually exclusive possibilities for the
realization of a broken symmetry in field
theory. One is the development of just such a
massive vector boson from a massless one;
the other is the absence of any vector boson
and the appearance of a massless scalar
boson, or Goldstone boson. The possible
Goldstone boson associated with family
symmetry has been called the familon and is
denoted by f. As is generally true for such
scalar bosons, the strength of its coupling
falls inversely with the mass scale of the
symmetry breaking. Cosmological argu-
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ments suggest a lower bound on the coupling
of approximately 1072 GeV ™!, a value very
near (within three orders of magnitude) the
upper bound determined from particle-phys-
ics experiments.

The familon would appear in the two-
body decays p — e + fand s — d + f. The
latter can be observed in the decay K (= u +
5) — 't (= u + d) + nothing else seen. The
familon would not be seen because it is about
as weakly interacting as a neutrino. The only
signal that the decay had occurred would be
the appearance of a positive pion at the
kinematically determined momentum of 227
MeV/c.

Such a search for evidence of the familon
would encounter an unavoidable back-
ground of positive pions from the reaction
K+ — " + v; + v;, where the index { covers
all neutrino types light enough to appear in
the reaction. This decay mode occurs
through a one-loop quantum-field correction
to the electroweak theory (Fig. 6) and is
interesting in itself for two reasons. First, it
depends on a different combination of the
parameters involved in CP violation and on
the number N, of light neutrino types. Since
N, is expected to be determined in studies of
Z0 decay, an uncertainty in the value of a
matrix e¢lement in the standard-model
prediction of the K* — n'v,v; branching
ratio can be eliminated. Present estimates
place the branching ratio in the range be-
tween 1077 and 107! times N,. Second, a
discrepancy with the N, value determined
from decay of the Z° , which is heavier than
the kaon, would be evidence for the existence
of at least one neutrino with a mass greater
than about 200 MeV/c%.

Fermion Masses and Family Sym-
metry Breaking

The mass spectrum of the fermions is itself
unequivocal evidence that family symmetry
is broken. These masses, which are listed in
Table 1, should be compared to the W< and
Z%masses of 83 and 92 GeV/c?, respectively,
which set the dynamical scale of electroweak
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Fig. 6. Feynman diagram for the decay K* — n* + v, + v;, where the index i covers
all neutrino types light enough to appear in the reaction. The symbol &; stands Sfor
the charged lepton associated with v; and v,

interactions. (The masses quoted are the the-
oretical values, which agree well with the
recently measured experimental values.) The
very existence of the fermion masses violates
electroweak symmetry by connecting dou-
blet and singlet representations, and the
variations in the pattern of mass splittings
within each family show that family sym-
metry is broken. But since we neither know
the mass scale nor understand the pattern of
the family symmetry breaking, we do not
really know the relation between the mass
scale of electroweak symmetry breaking and
the fermion mass spectrum. It is possible to
devise models in which the first family is
light because the family symmetry breaking
suppresses the electroweak symmetry break-
ing. Thus, the “natural” scale of electroweak
symmetry breaking among the fermions
could remain approximately 100 GeV/c?,
despite the small masses (a few MeV/c?) of
some fermions.

Experiments to establish the masses of the
neutrinos are of great interest to the family
problem and to particle physics in general.
Being electrically neutral, neutrinos are
unique among the fermions in possibly being
endowed with a so-called Majorana mass* in
addition to the usual Dirac mass. One ap-
proach to determining these masses is by
applying kinematics to suitable reactions.
For example, one can measure the end-point
energy of the electron in the beta decay *H —
3He + ¢~ + v, or of the muon in the decay n*
— p+ + v

Another quite different approach is to

search for “neutrino oscillations.” If the neu-
trino masses are nonzero, weak interactions
can be expected to mix neutrinos from dif-
ferent families just as they do the quarks.
This mixing would cause a beam of, say,
essentially muon neutrinos to be trans-
formed into a mixture (varying in space and
in time) of electron, muon, and tau neu-
trinos. Detection of these oscillations would
not only settle the question of whether or not
neutrinos have nonzero masses but would
also provide information about the dif-
ferences between the masses of neutrinos
from different families. Experiments are in
progress, but, since neutrino interactions are
infamously rare, high-intensity beams are
required to detect any neutrinos at all, let
alone possible small oscillations in their
family identity. (For details about the tritium
beta decay and neutrino oscillation experi
ments in progress at Los Alamos, see “Ex
periments To Test Unification Schemes.”)

Conclusion

The family symmetry problem is a funda
mental one in particle physics, apparentl
without sufficient information available a
present to resolve it. Yet it is as crucial an
important a problem as grand unification

*Majorana mass terms are not allowed for elec|
trically charged particles. Such terms induce trans
formations of particles into antiparticles and s
would be inconsistent with conservation of electri
charge.
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and it may well be a completely independent
one. The known bound of 10° GeV on the
scale of family dynamics is an order of mag-
nitude beyond the direct reach of any present
or proposed accelerator, including the Super-
conducting Super Collider. These dynamics

may, however, be accessible in studies of rare
decays of kaons and other mesons, of CP
violation, and of neutrino oscillations. To
undertake these experiments at the necessary
sensitivity requires intense fluxes of particles
from the second or later families. A high-

intensity, medium-energy accelerator could
be a highly effective means of achieving these
needs. Unlike many other experimental
questions in particle physics, those on the
high-intensity frontier are clearly defined.
We await the answers expectantly. I
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CP Violation
in Heavy-Quark
Systems

ere we extend the discussion of CP
Hviolation in “The Family Problem”
to heavier quark systems. This re-
quires generalizing the Cabibbo mixing ma-
trix (Eq. 3 in the main text) to more than two
families. The Cabibbo matrix relates the
weak-interaction eigenstates of the ud and cs
quark families to their strong-interaction
mass eigenstates. Now, in general, the uni-
tary transformation relating the weak and
strong eigenstates among 7 families will have
Yan(n— 1) rotations and Ya(n—1)(n—2)
physical phases.
We are interested in the generalization to
three families since the third family, contain-
ing the t and b quarks, is known to exist. This

extension of the Cabibbo mixing matrix i
called the Kobayashi-Maskawa (K-M) ma
trix after the two physicists who elucidatex
the problem. They realized that the mixin;
matrix for three families would naturall’
encompass a parameterization of CP viola
tion. The K-M matrix can be written as :
product of three rotations (which can bx
thought of as the Euler rotation angles o
classical physics even though the conventior
is not the standard one) and a single
physically meaningful phase (which can be
identified as the CP-violating parameter). Ir
particular, we define the K-M matrix V foi
the three quark families (ud, cs, and tb) a:
follows:

a d
S l=vis]), Al
v b (
where
1 0 0 1 00 (ST )] 0 1 0 O
V= 0 C 5 010 =5 0 0 Cy $ (Aj
0 —5 ¢ 0 0 €® 0 01 0 —s; G
(4] $1C3 ) 5153 )
=\ =512  c1ca03— 52536 10253+ spc3€® ) (Al
5182 —C15203 — 253 —C15:83 + ca036®



Note the form of V in Eq. A2. The first,
third, and fourth matrices are rotations
about particular axes. Except for the unusual
convention, this is just a general orthogonal
rotation in a three-dimensional Cartesian
system. The s; and the ¢; are the sines and
cosines of the three rotation angles 6;. Note
that the i = 1 rotation is the Cabibbo rotation
O¢ described in the text.

What is new is the second matrix factor in
Eq. A2, which contains the complex
amplitude with phase 8 that parameterizes
CP violation. Indeed, this is the factor that
makes V not an orthogonal transformation
but a unitary transformation. V is still norm-
preserving, but contains phase information,
something that quantum mechanics allows.

In principle, another matrix U relates the
weak and strong eigenstates of the u, ¢, and ¢
quarks, and the product UtV describes the
mixing of weak charged currents. However,
we follow the standard convention and take
U= I, thereby putting all of the physics of
UV into V itself. (Note that the unitarity of
V produces a result equivalent to that given
by Eq. 7: there are still no family-changing
neutral currents.) Because V'is “really” UV,
the rows of ¥ can be labeled by the u, ¢, and ¢
quarks. Thus, we can write V as

Vud Vu.v Vub
V| Va Ve Vo (A4)
Va Vis Vo

Physically, this means that the matrix ele-
ments Vj; can be considered coupling con-
stants or decay amplitudes between the
quarks and the weak charged bosons W*.
For example, V= sin 8; = sin O is the left
vertex in Fig. 4a of the main text, which can
be considered a u quark “decaying” into an s

quark.
We know from experiment that sin 6¢c =
0.23 = 0.01. But further, from recent

measurements of the lifetime of the b quark
and the branching ratio I'y.,/T5., we know

that 6, and 03 are both small. That is, we
have the information

| Ves| = | 1023 + 52¢3€®| = 0.044 + 0.005
(AS)

and

518
| 721=132 1=

0.12 . (A6)

These results imply that we can take ¢; and ¢3
to be unity and obtain the approximation

(4] S1 5183
Vel —s1 o —ss:e® s34+ 5e®
$1S2 —S;— $1e®  —s53+ B

(A7)

In terms of quark mixing, CP violation in
the K°-K9 system is described by a second-
order imaginary amplitude proportional to
5253 sin 8. In other words, the upper 2 by 2
piece of the matrix in Eq. A7 has this new
imaginary contribution when compared with
the Cabibbo matrix of Eq. 3. By using the
Feynman diagram of Fig. 5 in the main text,
the K9-K° transition-matrix element (tra-
ditionally called M,;) can be calculated in
terms of the weak-interaction Hamiltonian
and the entries of the mixing matrix V.

The older parameterization of CP viola-
tion, which involves the parameter g, is
model-independent. It focuses only on the
properties of CP symmetry and the kaons
themselves. It does not even need quarks.
The value of € is determined by experiments
(see below) and is directly related to Ay, It
remains for a particular formalism (such as
that described here) to successfully predict
Mj, in a consistent manner. [n particular,
within the K-M formalism it is hard to ob-
tain a large enough value for the CP-violating
amplitude € even if one assumes 8 =mn/2,
because §; and s; are so small. In fact, agree-
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ment with the measured value of € cannot be
obtained unless the mass of the ¢ quark is
equal to or greater than 60 GeV/c2 Because
the ¢ quark has not yet been found, this
possibility remains open.

One way in which CP violation is ob-
served in the K %K° system was described in
the main text. Another way is to detect an
anomalous number of decays to leptons of
the “wrong” sign. In the absence of mixing
one ordinarily expects positively charged
leptons from the K parent and negatively
charged leptons from the K° parent; that is,

= ds decays into d(udu) or d(ug*v), and

= ds decays into d(udu) or d(ugv), as
shown in Fig. Al. However, to describe the
propagation of a K° (or a K9, it must be
decomposed into K; and Kjg states each of
which is an approximate CP eigenstate con-
taining approximately equal amplitudes of
K%and K°. Since the K lifetime is negligibly
short, it is easy to design experiments to
measure decays of the Kj only. If CP were an
exact symmetry, then the K®and K° compo-
nents of the K; would have equal amplitudes
and would each provide exactly the same
number of leptonic decays; that is, just as
many “wrong”-sign leptons would come
from decays of the K° component (the anti-
particles of Fig. Al) as “right”-sign leptons
come from decays of the K9 component (Fig.
Al). The deviation from exact equality is
another measure of CP violation.

What about CP violation in other neutral-
boson systems? If one does the same type of
anaylsis as is often done for the kaon system,
one can phenomenologically describe CP
violation by

lo() = £(t) | % e f 9% ,

(A8)

where ¢° is a neutral boson, ¢° is its con-
jugate under C, g, is the CP-violating param-
eter specific to that boson, and

J2(®) = Yafexp[—(im, + T'/2)1]
+ exp[—(im; + I'y/2)1]} .

(A9)
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(Here the labels “1” and “2” refer to the
approximate CP eigenstates.) The value of
|egl <<'1 gives the magnitude of the CP-
violating amplitude relative to the CP-con-
serving amplitude.

For the kaon case, the decay widths I'; and
I'; (or I'L and T5) are such that the mixing
between K® and K is rapid. In particular,
since AI'/)T = 2 - +Ty) = (a
number of order unity), starting either from
K° or KO the system quickly ends up in the
K state. This allows a detection of CP viola-
tion by observing the few Ki — 2n decays.
However, for both the neutral D and T
mesons (D = cu, T= tu), the values of Am =
(my — my) and AT are both K-M suppressed
(that is, small, given the values of Vj; in Eq.
A7), whereas the decay widths I'; are not
suppressed. Therefore both Am/I" and AI'/T°
are small, and so the time scale for mixing is
long compared with that for decay. This
situation can be thought of as “the mesons
decaying before they have a chance to mix”
into their approximate CP eigenstates. Since
it is not possible to observe this mixing
easily, it is naturally even harder to observe
the deviation of the mixing from equal
amplitudes of each component, which is the
case for exact CP eigenstates. Thus, the ob-
servation of CP violation in the neutral D
and T systems will be very difficult.

For the neutral B mesons, however, the
mixing can be large, as again both I' and AT’
are “Cabibbo”- (actually K-M-) suppressed
by Eq. AS. Indeed, a large mixing of the
neutral B mesons containing a strange quark
(B? = bs and B? = b5) has already been
observed in the UA1 experiment at CERN.
(Mixing of these mesons is shown in Fig. A2.)
But the way this observation is done requires
some explanation. The experiment looks for
bb quark-pair production in proton-anti-
proton collisions. The signal for production
of a b quark is emission of a2 decay muon
(from decay of the b quark) with a large
momentum component transverse to the
axis defined by the proton and antiproton
beams. According to QCD calculations, the
overwhelming majority of observed back-to-
back muon pairs with high transverse
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Fig. Al. Feynman diagrams for the decays of K®=ds to (a) d(udu) and (b)
d(uf* v). The analogous decays of K® are ordinarily obtained from these simply by
changing every particle into its antiparticle.
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Fig. A2. Feynman diagram for the mixing between B? and B? mesons induced by
second-order weak interactions. This diagram is analogous to that presented in the
main text (Fig. 5) for mixing in the K°-K° system.

momentum are the decay products of a com-
mon bb quark pair. Such parent quark pairs
almost always appear as BB meson pairs.

Suppose there was little or no mixing be-
tween B%and B' 9 Then one would expect the
observed ratio of the decays of BB pairs
into back-to-back muon pairs with the same
charge [(+ +) or (— —)] to the decays of BIB?
pairs with opposite charge [(+—)] to be
about 25 percent. This ratio is deduced by
the following argument. Without mixing (a)
the main contribution to unlike pairs comes
from the direct decay of both quarks (b —
cuvand b — cutv), and (b) the main con-
tribution to like pairs comes from one pri-
mary decay and one secondary decay (for
example, b— cp~vand b— ¢ — sp7v). The
relative rates can be calculated from the
known weak-decay parameters, and one ob-
tains the value 0.24 for the ratio of like- to
unlike-sign pairs.

However, with mixing (such as that shown

in Fig. A2) one can sometimes have
processes like sb — scp™v and sb — sb —
scp~v. This transforms some of the expected
unlike-sign events into like-sign events. In
fact, for a mixing of 10 percent, this changes
the ratio of like- to unlike-sign events from
about ¥ to about ¥,

Indeed, the UA1 experiment at CERN
sees a ratio of 50 percent. This result can be
explained only by a large mixing between
B%and BY which overwhelms the tendency
for the b and b quarks to decay into opposite-
sign pairs. Since one needs significant mixing
to observe CP violation, there is hope of
learning more about CP, depending on the
(as yet undetermined) values of the mass-
matrix parameters for B%and BO(that is, m,,
my, Iy, and Ty).

For further details of this fascinating sub-
ject, we recommend the review “Quark Mix-
ing in Weak Interactions” by Ling-Lie Chau
(Physics Reports 95:1(1983)). B

Addendum
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Experiments to Test

Flash chambers discharging like neon lights, giant spectrometers, stacks of
crystals, tons of plastic scintillators, thousands of precisely strung
wires—all employed to test the ideas of unified field theories.

t has long been a dream of physicists to produce a unified field theory of the

forces in nature. Much of the current experimental work designed to test such

theories occurs at the highest energies capable of being produced by the latest

accelerators. However, elegant experiments can be designed at lower energies
that probe the details of the electroweak theory (in which the electromagnetic and
weak interactions have been partially unified) and address key questions about the
further unification of the electroweak and the strong interactions. (See “An Ex-
perimentalist’s View of the Standard Model” for a brief look at the current status of
the quest for a unified field theory.)

In this article we will describe four such experiments being conducted at Los
Alamos, often with outside collaborators. The first, a careful study of the beta decay
of tritium, is an attempt to determine whether or not the neutrino has a mass and
thus whether or not there can be mixing between the three known lepton families
(the electron, muon, and tau and their associated neutrinos).

Two other experiments examine the decay of the muon. The first is a search for
rare decays that do not involve neutrinos, that is, the direct conversion across
lepton families of the muon to an electron. The muon is a duplicate, except for a
greater mass, of the electron, making such a decay seem almost mandatory.
Detection of a rare decay, or even the lowering of the limits for its occurrence, would
tell us once again more about the mixing between lepton families and about possible
violation of lepton conservation laws. At the same time, precision studies of
ordinary muon decay, in which neutrinos are generated (the muon is accompanied
by its own neutrino and thereby preserves muon number), will help test the stucture
of the present theory describing the weak interaction, for example, by setting limits
on whether or not parity conservation is restored as a symmetry at high energies.

The electron spectrometer for the tritium beta decay experiment under
construction. The thin copper strips evident in the entrance cone region to
the right and at the first narrow region toward the center are responsible
Sor the greatly improved transmission of this spectrometer.
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The intent of the fourth experiment is to
measure interference effects between the
neutral and charged weak currents via scat-
tering experiments with neutrinos and elec-
trons. If destructive interference is detected,
then the present electroweak theory should
be applicable even at higher energies; if con-
structive interference is detected, then the
theory will need to be expanded, say by
including vector bosons beyond those (the
Z°% and the W*%) already in the standard
model.

Tritium Beta Decay

In 1930 Pauli argued that the continuous
kinetic energy spectrum of electrons emitted
in beta decay would be explained by a light,
neutral particle. This particle, the neutrino,
was used by Fermi in 1934 to account quan-
titatively for the kinematics of beta decay. In
1953, the elusive neutrino was observed
directly by a Los Alamos team, Fred Reines
and Clyde L. Cowan, using a reactor at Han-
ford.

Though the neutrino has generally been
taken to be massless, no theory requires neu-
trinos to have zero mass. The current ex-
perimental upper limit on the electron neu-
trino mass is 55 electron volts (eV), and the
Russian team responsible for this limit
claims a lower limit of 20 eV. The mass of the
neutrino is still generally taken to be zero, for
historical reasons, because the experiments
done by the Russian team are extremely
complex, and because masslessness leads to a
pleasing simplification of the theory.

A more careful look, however, shows that
no respectable theory requires a mass that is
identically zero. Since we have many neu-
trino flavors (electron, muon and tau neu-
trinos, at least), a nonzero mass would im-
mediately open possibilities for mixing be-
tween these three known lepton families.
Without regard to the minimal standard
model or any unification schemes, the
possible existence of massive neutrinos
points out our basic ignorance of the origin of
the known particle masses and the family
structure of particles.
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An Experimentalist’s
View of the
Standard Model

he dream of physicists to produce a
I unified field theory has, at different
times in the history of physics, ap-
peared in a different light. For example, one
of the most astounding intellectual achieve-
ments in nineteenth century physics was the
realization that electric forces and magnetic
forces (and their corresponding fields) are
different manifestations of a single elec-
tromagnetic field. Maxwell’s construction of
the differential equations relating these two
fields paved the way for their later relation to
special relativity.

QED. The most successful field theory to
date, quantum electrodynamics (QED), ap-
pears to have provided us with a complete
description of the electromagnetic force.
This theory has withstood an extraordinary
array of precision tests in atomic, nuclear,
and “particle physics, and' at’ low and high
energies. A generation of physicists has
yearned for comparable field theories de-
scribing the remaining forces: the weak inter-
action, the strong interaction, and gravity.
An even more romantic goal has been the
notion that a“single field theory might de-
scribe all the known physical interactions.

Electroweak Theory. In the last two dec-
ades we'have come along way towards realiz-
ing this:goal. The electromagnetic and weak
interactions appear-to be ‘well described by
the “Weinberg-Salam-Glashow model that
unifies the two fields in a gauge theory. (See
“Particle Physics and the-Standard Model”
for a discussion of gauge theories and other
details just briefly mentioned here.) This

electroweak theory appears to account for
the apparent difference, at low energics, be-
tween the weak interaction and the elec-
tromagnetic interaction. As the energy of an
interaction “increases, a unification® is
achieved. :

So far, "at energies “accessible to modern
high-energy accelerators, the theory is sup-
ported by experiment. In fact, the discovery
at CERN in 1983 of the heavy vector bosons
W, W™, and Z° whose large mass (com:
pared to the photon) accounts for the rel-
atively “weak™ nature of the weak force,
beautifully confirms and-reinforces the new
theory.

The electroweak theory has many  ex-
perimental -triumphs, ‘but experimental
physicists have been: encouraged to press
ever harder to test-the theory, to explore its
range of validity, and-to search for new fun-
damental-interactions and particles. The ex-
perience ‘with -QED, which has survived
decades of precision tests, is the standard by
which to judée tests of the newest field-the-.
ories.

QCD. A recent, successful field theory that
describes - the - strong force ‘is quantum
chromodynamics {(QCD). In this theory the
strong force is mediated by the exchange of
color gluons-and a coupling constant is de-
termined analogous to the fine structure con-
stant of the electroweak theory.

Standard Model. QCD and the elec-
troweak theory are now embedded and
united in the minimal standard model. This
model organizes all three fields in a gauge
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Table

The first three generations of elementary particles.

Family: I

‘,, Quarks: ( :;)L

Doublets

Leptons:

Singlets:

theory of electroweak and strong interac-
tions. There are two classes of particles: spin-
I/, particles called fermions (quarks and lep-
tons) that make up the particles of ordinary
matter, and spin-1 particles called bosons
that account for the interactions between the
fermions.

In this theory the fermions are grouped
asymmetrically according to the “handed-
ness” of their spin to account for the ex-
perimentally observed violation of CP sym-
metry. Particles with right-handed spin are
grouped in pairs or doublets; particles with
left-handed spin are placed in singlets. The
exchange of a charged vector boson can con-
vert one particle in a given doublet to the
other, whereas the singlet particles have no
weak charge and so do not undergo such
transitions.

The Table shows how the model, using
this scheme, builds the first three generations
of leptons and quarks. Since each quark (i, d,
¢, s, t, and b) comes in three colors and all
fermions have antiparticles, the model in-
cludes 90 fundamental fermions.

The spin-1 boson mediating the elec-
tromagnetic force is a massless gauge boson,

II I

that is, the photon y. For the weak force,
there are both neutral and charged currents
that involve, respectively, the exchange of
the neutral vector boson Z°and the charged
vector bosons W™* and W™, The color force
of QCD involves eight bosons called gluons
that carry the color charge.

The coupling constants for the weak and
electromagnetic interactions, gwx and gen,
are related by the Weinberg angle By, a mix-
ing angle used in the theory to parametrize
the combination of the weak and elec-
tromagnetic gauge fields. Specifically,

8in Bw = Zem/Gux -

Only objects required by experimental re-
sults are in the standard model, hence the
term minimal. For example, no right-handed
neutrinos are included. Other minimal as-
sumptions are massless ncuirinos and no
requirement for conservation of total lepton
number or of individual lepton flavor (that
is, electron, muon, or tau number).

The theory, in fact, includes no mass for
any of the elementary particles. Since the

vector bosons for the weak force and all the
fermions (except perhaps the neutrinos) are
known to be massive, the symmetry of the
theory has to be broken. Such symmetry-
breaking is accomplished by the Higgs mech-
anism in which another gauge field with its
yet unseen Higgs particle is built into the
theory. However, no other Higgs-type parti-
cles are included.

Many important features are built into the
minimal standard model. For example, low-
energy, charged-current weak interactions
are dominated by V' — 4 (vector minus axial
vector) currents; thus, only left-handed W
bosons have been included. Also, since neu-
trinos are taken to be massless, there are
supposed 10 be no oscillations between neu-
trino flavors.

There are many possibilities for ex-
tensions to the standard model. New bosons,
families of particles, or fundamental interac-
tions may be discovered, or new substruc-
tures or symmetries may be required. The
standard model, at this moment, has no
demonstrated flaws, but there are many po-
tential sources of trouble (or enlightenment).

GUT. One of the most dramatic notions
that goes beyond the standard model is the
grand unified theory (GUT). In such a the-
ory, the coupling constants in the elec-
troweak and strong sectors run together at
extremely high energies (10'* to 10' giga-
electron volts (GeV)). All the fields are uni-
fied under a single group structure, and a new
object, the X, appears to generate this grand
symmetry group. This very high-energy mass
scale is not directly accessible at any con-
ceivable accelerator. To explore the wilder-
ness between present mass scales and the
GUT scale, alas, all high-energy physicists
will have to be content to work as low-energy
physicists. Some seers believe the wilderness
will be a desert, devoid of striking new phys-
ics. In the likely event that the desert is found
blooming with unexplored phenomena, the
journey through this terra incognita will be a
long and fruitful one, even if we are restricted
to feasible tools. B




The reaction studied by all of the experi-
ments mentioned is

H —3Het+¢ +v,.

This simple decay produces a spectrum of
electrons with a definite end point energy
(that is, conservation of energy in the reac-
tion does not allow electrons to be emitted
with energies higher than the end point
energy). In the absence of neutrino mass, the
spectrum, including this end point energy,
can be calculated with considerable
precision. Any experiment searching for a
nonzero mass must measure the spectrum
with sufficient resolution and control of sys-
tematic effects to determine if there is a
deviation from the expected behavior.

Specifically, an end point energy lower
than expected would be indicative of energy
carried away as mass by the neutrino.

In 1972 Karl-Erik Bergkvist of the Univer-
sity of Stockholm reported that the mass of
the electron antineutrino v, was less than 55
eV. This experiment used tritium embedded
in an aluminum oxide base and had a resolu-
tion of 50 eV. The Russian team set out to
improve upon this result using a better spec-
trometer and tritium bound in valine
molecules.

Valine is an organic compound, an amino
acid. A molecular biologist in the Russian
collaboration provided the expertise
necessary to tag several of the hydrogen sites
on the molecule with trittium. This knowl-
edge is important since one of the effects
limiting the accuracy of the result is the
knowledge of the final molecular states after
the decay.

Also important was the accurate de-
termination of the spectrometer resolution
function, which involved a measurement of
the energy loss of the beta electrons in the
valine. This was accomplished by placing an
ytterbium-169 beta source in an identical
source assembly and measuring the energy
loss of these electrons as they passed through
the valine.

The beta particles emitted from the source
were analyzed magnetically in a toroidal beta
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spectrometer. This- kind of. spectrometer
provides the largest acceptance for a given
resolution of any known design, and the

Russians made very significant advances. .
The Los Alamos research group, as we shall '
see, has improved the spectrometer design.

even further.

In 1980 the Russian group published a
positive result for the electron antineutrino
mass. After including corrections for the un-

certainties in resolution and the final state:
spectrum, they quoted a 99 per cent con- -

fidence level value of

14<m;,<46eV .

The result was received with great excite- -

ment, but two specific criticisms emerged.
John J. Simpson of the University of Guelph

pointed out that the spectrometer resolution .

was estimated neglecting the intrinsic
linewidth of the spectrum .of the yt-
terbium-169 calibration source. The ex-,
perimenters then measured the source
linewidth to be 6.3 eV their revised analysis
lowered the best value of the neutrino mass
from 34.3 to 28 eV. The basic result of a
finite mass survives this reanalysis, accord-
ing to the authors, but it should be noted that
the result is very sensitive to the calibration
linewidth. Felix Boehm of the California In-
stitute of Technology has observed that with
an intrinsic linewidth of only 9 ¢V, the 99 per
cent confidence level result would become
consistent with zero. - ’ ‘

The second criticism relatéd to the as-
sumption made about the energy of the final
atomic states of helium-3. The valine
molecule provides a complex environment,
and the branching ratios into the 2s and
s states of helium-3 are difficult to estimate.
Thus the published result may prove to be
false. o o

This discussion illustrates the-difficulty of
experiments of this kind. ‘Each effort
produces, in addition to the published meas-
urement, a roadmap to the next generation
experiment. The Russian team built upon its
1980 result and produced a substantially im-
proved apparatus that yielded a new meas-

urement in 1983.

The spectrometer was improved by adding
an electrostatic field between the source and
the magnetic spectrometer that could be used
to accelerate the incoming electrons. The
beta spectrum could then be measured,
under conditions of constant magnetic field,
by sweeping the electrostatic field to select
different portions of the spectrum. This tech-
nique (originally suggested by the Los Ala-
mos group) provides a number of advan-
tages. The magnetic spectrometer always
sees clectrons in the same energy range,
providing constant detection efficiency
throughout the measured spectrum. The
magnetic field can also be set above the beta
spectrum end point with the electrostatic
field accelerating electrons from decays in
the source into the spectrometer acceptance.
This reduces the background by a large factor
by making the spectrometer insensitive to
electrons from decays of tritium contamina-
tion in the spectrometer volume.

Also, finite source size, which produces a
larger image at the spectrometer focal plane,
was optically reduced by improved focusing
at the source, yielding a higher count rate
with better resolution.

The improved spectrometer had a resolu-
tion of 25 eV, compared to 45 eV in the 1980
experiment. Background was reduced by a
factor of 20, and the region of the spectrum
scanned was increased from 700 eV to 1750
eV.

The controversial spectrometer resolution
function was determined using a different
line of the ytterbium-169 source, and the
Russians measured its intrinsic linewidth to
be 14.7 eV. They also studied ionization
losses by measuring the ytterbium-169 spec-
trum through varying thicknesses of valine,
yielding a considerably more accurate resolu-
tion function.

The data were taken in 35 separate runs
and the beta spectrum (Fig. 1) was fit by an
expression that included the ideal spectral
shape and the experimental corrections. The
best fit gave

m;, =330+ 1.1eV,
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Fig. 1. Electron energy spectrum for
tritium decay. This figure shows the
1983 Russian data as the spectrum
drops toward an end point energy of
about 18.58 keV. The difference in the
best fit to the data (solid line) and the
it for a zero neutrino mass (dashed
line) is a shift to lower energies that
corresponds to a mass of about 33.0 eV.
(Figure adapted from Michael H.
Shaevitz, ‘“Experimental Results on
eutrino Masses and Neutrino Os-
illations,” page 140, in Proceedings
f the 1983 International Symposium
n Lepton and Photon Interactions at
igh Energies, edited by David G.
assel and David L. Kreinick (Ithaca,
ew York:F.R. Newman Laboratory of
uclear Studies, Cornell University,
983).)

ith a 99 per cent confidence limit range of
20<m;,<55¢eV.
hese results were derived by making

articular choices for the final state spectra.
ifferent assumptions for the valine molecu-

lar final states and the helium-3 molecular,
atomic, and nuclear final states can produce
widely varying results.

The physics community has been 1an-
talized by the prospect that neutrinos have
significant masses. Lepton flavor transitions,
neutrino oscillations, and many other
phenomena would be expected if the result is
confirmed. The range of systematic effects,
however, urges caution and enhanced efforts
by experimenters to attack this problem in an
independent manner. There are currently
more than a dozen groups around the world
engaged in improved experiments on tritium
beta decay. A wide range of tritium sources,
beta spectrometers, and analysis techniques
are being employed.

The Tritium Source. In an ambitious at-
tempt to use the simplest possible tritium
source, a team from a broad array of tech-
nical fields at Los Alamos is attempting to
develop a source that consists of a gas of free
(unbound) tritium atoms. Combining di-
verse capabilities in experimental particle
physics, nuclear physics, spectrometer de-
sign, cryogenics, tritium handling, ultraviolet
laser technology, and materials science, this
team has developed a nearly ideal source and
has made numerous improvements in elec-
trostatic-magnetic beta spectrometers.

The two most significant problems come
from the scattering and energy loss of the
electrons in the source and from the atomic
and molecular final states of the helium-3
daughter. These effects are associated with
any solid source. Thus the ideal source would
appear to be free tritium nuclei, but this is
ruled impractical by the repulsive effects of
their charge.

The next best source is a gas of free tritium
atoms. Detailed and accurate calculations of
the atomic final states and electron energy
losses can be performed. Molecular effects,
including final state interactions, breakup,
and energy loss in the substrate, are
eliminated. Since the gas contains no inert
atoms, the effect of energy loss and scattering
in the source are reduced accordingly. Even
the measurement of the beta spectrometer

resolution function is simplified.

The forbidding technical problem of such
a design is building a source rich enough and
compact enough to yield a useful count rate.
Only one decay in 107 produces an electron
with energy in the interesting region near the
end point where the spectrum is sensitive to
neutring mass.

The Los Alamos group was motivated by a
1979 talk given by Gerard Stephenson, of the
Physics and Theoretical Divisions, on neu-
trino masses. They recognized quite early, in
fact before the 1980 Russian result, that
atomic tritium would be a nearly ideal
source. In their first design, molecular
tritium was to be passed through an ex-
tensive gas handling and purification system
and atomic tritium prepared using a dis-
charge in a radio-frequency dissociator. The
pure jet of atomic tritium was then to be
monitored for beta decays. It was clear, how-
ever, that the tritium atoms needed to be
used more efficiently.

Key suggestions were made at this point
by John Browne of the Physics Division and
Daniel Kleppner of the Massachusetts In-
stitute of Technology. Advances had been
made in the production of dense gases of
spin-polarized hydrogen. The new tech-
niques—in which the atomic beam was
cooled and then contained in a bottle made
of carefully chosen materials observed to
have a low probability for promoting recom-
bination of the atoms—promised a possible
intense source of free atomic trittum. The
collaboration set out to develop and demon-
strate this idea. Crucial to the effort was the
participation of Laboratory cryogenics
specialists.

The resulting tritium source (Fig. 2)
circulates molecular tritium through a radio-
frequency dissociator into a special tube of
aluminum and aluminum oxide. Because the
recombination rate for this material near 120
kelvins is very low, the system achieves 80 to
90 per cent purity of atomic tritium. The
electrons from the beta decay of the atomic
tritium are captured by a magnetic field, and
then electrostatic acceleration, similar to that
employed by the Russians, is used to trans-
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Fig. 2. The tritium source. Molecular tritium passes through
the radio-frequency dissociator and then into a 4-meter-
long tube as a gas of free atoms. The tube—aluminum with a
surface layer of aluminum oxide—has a narrow range
around a temperature of 120 kelvins at which the molecular
recombination rate is very low, permitting an atom to
experience approximately 50,000 collisions before a
molecule is formed. The resulting diffuse atomic gas fills the
tube, and mercury-diffusion pumps at the ends recirculate it
through the dissociator. Typically, the system achieves 80 to
90 per cent purity of atomic tritium. By measuring the
spectrum when the dissociator is off, the contribution from
the 10 to 20 per cent contamination of molecular tritium can

be determined and subtracted, resulting in a pure atomic
tritium electron spectrum.

A superconducting coil surrounds the tube with a field of
1.5 kilogauss. At one end the winding has a reflecting field
provided by a magnetic pinch. These fields capture electrons
Jfrom beta decays with 95 per cent efficiency.

The other end of the tube connects to a vacuum region and
has coils that transport and, importantly, focus an image of
the electrons into the spectrometer (Fig 3). The tube is held
at a selected voltage between —4 and —20 kilovolts, and
electrons exit the source to ground potential. Thus, electrons
from decays in the source tube are accelerated by a known
amount to an energy above that of electrons from decays in

port the electrons toward the spectrometer.
During this transport, focusing coils and a
collimator are used to form a small image of
the electron source in the spectrometer.

Development of this tritium source re-
quired solving an array of problems as-
sociated with a system that was to recirculate
atomic tritium. Everything had to be ex-
tremely clean, and no organic materials were
allowed; all surfaces are glass or metal. Con-
ducting materials had to be used wherever
insulators could collect charge and introduce
a bias. The aluminum oxide coating in the
tube is so thin that electrons simply tunnel
through it, thus providing a conducting sur-
face that does not encourage recombination.
Special mercury-diffusion pumps and cus-
tom cryopumps, free of oil or other organic
materials, had to be fabricated. Every part of
the tritium source was an exercise in
materials science.
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The idea of using electrostatic acceleration
at the output of the source was first proposed
by the group at Los Alamos in 1980 and
subsequently used in the measurement de-
scribed in the 1983 Russian publication. Ac-
celerating the electrons to an energy above
that of electrons from tritium that decays in
the spectrometer both strongly reduces the
background and also improves the accep-
tance of electrons into the spectrometer.
However, this technique necessitates a larger
spectrometer.

There are two other important systematic
effects that need to be dealt with: the source
image seen by the spectrometer should be
small, and electrons produced by decays in
the tube that suffer scattering off the walls
have an energy loss that distorts the
measured spectrum. The focusing coil and
the final collimator address both effects,
providing a small image. The only energy

loss mechanism remaining is in the tritium
gas itself, where losses are less than 2 eV.

The Spectrometer. In addition to cryo-
genics, tritium handling, and laser tech-
nology, the Laboratory’s powerful comput-
ing capabilities were employed in both the
detailed optical design of the beta-electron
spectrometer and in extensive Monte-Carlo
modeling.

The spectrometer (Fig. 3) is an ambitious
development of the Russian design. Elec
trons from the source pass through the en
trance cone and are focused onto the spec
trometer axis. One very significant improve
ment in the spectrometer is the design of th
conductors running parallel to the spec
trometer axis that do this focusing. In th
Russian apparatus, the conductors wer
thick water-cooled tubes. Most electron:
strike the tubes and, as a result of this loss]
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the spectrometer. Additional pumps also sharply reduce the
amount of tritium escaping into the spectrometer.

Several sophisticated diagnostic systems monitor source
output and stability. Beta detectors mounted in the focus
region in front of the collimator measure the total decay rate
Jfrom molecular and atomic tritium, whereas the fraction of

tritium in molecular form is monitored by an ultraviolet

(1027 angstroms wavelength) laser system developed by
members of Chemistry Division that uses absorption lines of
molecular tritium. A high-resolution electron gun is used to
monitor energy loss in both the gas and the spectrometer.
This gun is also used to measure the important spectrometer
resolution function directly.

Fig. 3. The spectrometer. Electrons from the source (Fig. 2)
that pass through the collimator (with an approximate
aperture of 1 centimeter) open into a cone shaped region in
the spectrometer with a maximum half angle of 30 degrees.
Electrons between 20 and 30 degrees pass between thin
conducting strips into the spectrometer and are focused onto
the spectrometer axis. This focus serves as a virtual image of
the source. Transmission has been greatly improved over the
Russian design through the use of thin conductors in all
regions of electron flow (see opening photograph for a view
of these conductors). The final focal plane detector is a
position-sensitive, multi-wire proportional gas counter, also
an improvement over previous detectors.

their spectrometer has low transmission.

The Los Alamos spectrometer uses thin
20-mil strips for each of the conductors in the
region within the transport aperture. This
achieves an order of magnitude higher trans-
mission, essential in yielding a useful count
rate in an experiment with a dilute gas
source.

Another benefit of the thin strips is that
they can be formed easily. In fact, optical
calculations accurate to third order dictate
the curvature of the entrance and exit strips.
The improved focusing properties of this
arrangement yield an acceptance three times
higher than the Russian device with no com-
promise in resolution.

The experimenters expect to be taking
data throughout the latter part of 1984. They
expect an order of magnitude less back-
ground and an order of magnitude larger
geometric acceptance than the Russian ex-

periment. The design calls for a resolution
between 20 and 30 eV, with a sensitivity to
neutrino masses less than 10 eV. Even with
their dilute gas source, they estimate a data
rate in the region within 100 eV of the spec-
trum end point of about 1 hertz, fully com-
petitive with rates obtained using solid
sources.

Many groups around the world are
vigorously pursuing this measurement. No
other effort, however, will produce a result as
free of systematic problems as the Los Ala-
mos project. Other experiments are employ-
ing solid sources or, at best, molecular
sources. Many have adopted an electrostatic
grid system that introduces its own prob-
lems. To date, no design promises as clean a
measurement. This year may well be the year
in which the problem of neutrino mass is
settled. The quantitative answer will be an
important tool in uncovering the very poorly

understood relations between lepton
families. No deep understanding of the mod-
els that unify the forces in nature can be
expected without precise knowledge of the
masses of neutrinos.

Rare Decays of the Muon

The muon has been the source of one
puzzle after another. It was discovered in
1937 in cosmic radiation by Anderson and
Neddermeyer and by Street and Stevenson
and was assumed to be the meson of
Yukawa’s theory of the nuclear force.

Yukawa postulated that the nuclear force,
with its short range, should be mediated by
the exchange of a massive particle, a meson.
This differs from the massless photon of the
infinite-range electromagnetic force. The
muon mass, about 200 times the electron
mass, fit Yukawa’s theory well.
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It was only after World War II ended that
measurements of the muon’s range in
materials were found to be inconsistent with
a particle interacting via a strong nuclear
force. Discovery of the pion, or pi meson,
settled the controversy. To this day, how-
ever, casual usage sometimes includes the
erroneous phrase ‘““‘mu meson”.

With the resolution of the meson problem,
however, the muon had no reason to be. It
was simply not necessary. The muon ap-
peared to be, in all known ways, a massive
electron with no other distinguishing at-
tributes. A famous quotation of I. 1. Rabi
summarized the mystery: “The muon, who
ordered that?”

This question is none other than the
family problem described earlier. Today, the
mystery remains, but its complexity has
grown. Three generations of fermions exist,
and the mysterious relation of the muon to
the electron is replicated in the existence of
the tau, discovered in 1976 by Martin Perl
and collaborators. The three generation
scheme is built into the minimal standard
model, but there is little insight to guide us to
the ultimate number of generations.

Is there a conservation number associated
with each family or generation? Are there
selection rules or fundamental symmetries
that account for the apparent absence of
some transitions between these multiplets?
Vertical and horizontal transitions between
quark states do occur. Processes involving
neutrinos connect the lepton generations.
Can the pattern of these observed transitions
give us a clue as to why we are blessed with
this peculiar zoology? Should we look harder
for the processes we have not observed?
Rabi’s question, in its most modern form, is
a rich and bewildering one, and many ex-
perimental groups have taken up its
challenge by pursuing high sensitivity studies
of the rare and unobserved reactions that
may connect the generations.

With the muon and electron virtual
duplicates of each other, it was expected that
the heavier muon would decay by simple,
neutrinoless processes to the electron. Tran-
sitions such as p* — " ¢ ¢, u* — " vy, or
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Table 1

. Family Particles
Electron €, Ve
et v,
Mueon p Vi
nr, vy
Tau T,V
v,

Allowed Decay: p* — " v, v,

The additive lepton numbers, their conservation laws, and some of the
decays allowed or forbidden by those laws.

Conservation-Laws: £L, = Constant, £L, = Constant, XL, = Constant

Forbidden Decays: p+ = ¢™y

Lepton Number

L=+l
Le”=—'1
L=+
L,=-1
L=+1

=~

put—etet e
W Z—=eZ
u Z—»e (Z-2)
ph— v,

W Z — ¢ Z (where Z signifies that the
interaction is with a nucleus) were expected.
Estimates of the rates for these processes
using second-order, current-current weak in-
teractions gave results too small