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A GENERAL METHOD FOR DETERMINING COINCIDENCE
CORRECTION OF COUNTING INSTRUMENTS

By T. P. Kohman

ABSTRACT

The method herein described for determining and applying coincidence corrections in counters
is an extension of the general method of paired sources. Several pairs of radioactive sources are
used, and for each pair, counts are taken with the instrument on the sources separately and together.
A general relationship between the recorded counting rate R and the ‘‘true’’ rate N is assumed,
being the first few terms of an infinite power series:

N=R+7R2+vR3+R*+....

where 7 is the resolving time of the counter and v, @, . . . . are independent parameters. By a
least~squares method, the values of the parameters for the instrument in question are determined
which most adequately correlate the experimental data. Subsequent measurements made with the
instrument can then be corrected by means of this equation.

A few examples of the use of this method are presented. They indicate that the method is a
satisfactory solution of the problem and should be of considerable value.

INTRODUCTION

All instruments which count random events, such as those encountered in the measurement of
radioactivity, have finite resolving powers, and hence are unable to separately distinguish and record
events occurring very close together in time. As a consequence some counts are missed, the fraction
lost increasing as the counting rate increases. This results in a nonlinear variation of the response
of the instrument to the intensity of the source of events, The difference between the recorded rate

“and the ‘‘true’’ rate (that is, the rate which would be observed if the instrument could count all events
to which it is normally sensitive) is called the coincidence loss or correction.

In practice coincidence losses are often appreciable, and therefore, in order to obtain accurate
measurements in radioactivity with counting instruments, it is necessary to correct the recorded
counting rates for this effect. Moreover, the useful upper limit of a counter is greatly extended by
a knowledge of its coincidence corrections. Coincidence loss measurements also supply valuable
information about the mode of operation of counters, and provide a useful guide in improving in-
struments so as to decrease their losses,

The problem has received attention for a number of years, and several methods of determining
and applying coincidence corrections are described in the literature, However, all of these methods
are either inconvenient, not generally applicable, or not sufficiently accurate. Recent experience at
the Hanford Engineer Works and other Metallurgical Project Sites has indicated the importance of
the problem and the inadequacy of the previously described methods. This report describes a new
method which is capable of any desired accuracy and which is almost completely general in its
applicability.
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THEORY OF THE METHOD

Notation

To facilitate the discussion, the notation to be used is presented herewith:
R = recorded rate. '
N = true or corrected rate (including background). : j
b = background rate.
N’ = N —Db = corrected rate due to source alone. ;
t = time of count. . \
Subscripts A and B refer to individual members of a pair of sources.
Subscript C refers to the combined sources of the pair.
T = resolving time of counter.

v,0,....= supplementary parameters.

Methods Involving the Use of Paired Sources

Reviews of methods of determining coincidence corrections have been given by Beers' and
Kohman? The use of paired sources, first proposed by Moon,® has been frequently employed.*
If each of two radioactive sources of approximately equal strength is measured separately, and
then the two are measured together, taking care to keep geometrical factors constant throughout,
the combined counting rate (corrected for background) will be less than the sum of the individual
rates (corrected for background), since the fractional counting loss is greater at the higher ‘

|

5,1,2,6,7

counting rate. If a simple mathematical relationship between recorded and true rates involving
but a single parameter applies for the instrument, a single set of measurements on one pair of
sources can be used to evaluate the parameter.%%72%°%7 However, it has been shown?® that the
simple one-parameter relationships previously proposed do not adequately express the behavior
of real counters.

In order to avoid this difficulty, a completely general method which involves no assumed
mathematical relationship between true and recorded rates was developed.? This method em-
ployes a number of paired sources of different intensities covering the range of the instrument,
and the data are analyzed by a graphical method of successive approximations which gives a
curve of fractional correction versus recorded rate. Unfortunately, this method is tedious, time
consuming, and possibly subject to personal factors. A completely mathematical analysis of the
data would be a considerable improvement. A prerequisite of this is a mathematical relationship
between true and recorded rates.

Single-parameter relationships between N and R which have been proposed are these:

a) Johnson and Street;® Ruark and Brammer:*°

N=R+7NR i @

b) Volz,'* Schiff:!?

N = Re™ )
¢) An approximation of (b) due to Hull:* '
N =R+ TR®+ 1/272 R? 3
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d) An approximation of (a)%2,";

N=R+7R? @)

For each of these relationships, methods have been developed for evaluating the parameter 7
from a set of paired source measurements. The derivations of equations 5 to 9 proceed from the
fact that N’y + N'g = Nc.

a) Beers:!

_Rp+Rp-Rc-b [(Ry +Rp—Rc ~b)Re ~b)/Rp — b)Rp ~b)]? 5)

T = —
2(Rp —b) (RB —b) 8(Rc ~b)

Kohman:®

7= [1-y 1-——BC  @®,+Rg-Re-b) 6)
RC RARB A B C

Equation 5 is more exact at low counting rates, and equation 6 at high rates.

b) Crawford:®
Nc = (Rp+Rp)P/Rc (n

7 is then obtained from Ng, Re, and equation 2, For equation 7 to be
applicable, the background must be small enough to be neglected, and R A
and RB must be very nearly equal.

¢) Hull:*
1/2 (Rp® + Rp® —R:%)r? + (RA* + Rp? ~Rc?)r + Ry + Rg —Re —b = 0 (8)
7 is obtained by solution of this equation by the quadratic formula.

d) Jarrett;® Kohman;*? Metcalf and Hennessee:”

T= (RA + RB _RC _b)/(Rcz "R‘&2 _RBZ) (9)

Inspection of equations 1, 2, 3, and 4 reveals that they are all nearly equivalent for low counting
rates, where the difference between N and R is very small (~19,), Moreover, any one will adequately
represent the behavior of actual counters in the region of small losses. Equation 4 means that the
fractional correction is proportional to R, and because of the simplicity of this equation and its
corollary 9, these equations have received extensive use in rough evaluations and applications of
coincidence corrections.®?%%7 In general, however, no single-parameter equation, theoretical or
empirical, can adequately relate N and R when the losses are large. As an illustration, a semi-
theoretical equation which expressed the observed behavior of a Geiger-Mueller counter over a
wide range of counting rates contained three parameters (equation 2). However, that equation is
not suitable for practical application, nor is it applicable to other types of instruments,

In theory, the relationship between two dependent variables such as N and R can be expressed
by an infinite power series:

N=co+cR+cRE+cR+CcR*++-+: (10)
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If we setc, =0
¢ =1
C=T

equation 10 becomes equivalent to equations 1, 2, 3, and 4 for small values of R. Hence, we are
justified in rewriting the series as follows: ’

N=R+7TR®+vR*1+¢R*+.... (11)

For practical purposes, the number of terms of equation 11 to be retained will be determined
by the behavior of the instrument and precision required.

As previously mentioned, when only two terms of equation 11 are used, giving equation 4, the
parameter can be evaluated from measurements on a single pair of sources by means of equation 9.
It has been pointed out by Jarrett® that one might similarly use the first three terms of equation 11
and evaluate the two parameters from measurements on two pairs of sources. One obtains two
equations analogous to equation 9 but involving the two unknown parameters, and their simultaneous
solution yields the values of the latter. Similarly, this method can be extended to any number of

" terms of equation 11 by employing as many pairs of sources as there are parameters.

The Least-squares Evaluation of Paired Source Data

The use of equations such as equation 9, or its higher analogues according to the method of
Jarrett, has a serious disadvantage in that only a limited number of measurements can be admitted
into the evaluation of the parameters. It is generally desirable to employ & greater number of
measurements in obtaining the final result, so that an error in one measurement will not seriously
effect the values of the parameters (as would be the case when the minimum number of measure-
ments is used), and so that the entire counting range of the instrument can be represented in the
data. The method of least squares provides a means of doing this.

Consider a pair of sources which have been counted separately and together. Let us define the
quantity § , which we will call the residual, thus:

8 =N, + Ng — N

If the N values were the true values, as would be the case if the correction of the R values
were perfect, then 5 would equal zero {except for statistical fluctuations due to the random dis-
tribution of counts). Actually, when the N values are obtained by an equation such as will be used
in practice, the corrections will not be perfect, and § 0. § is the algebraic sum of the errors in
the corrections to Rj, Rp, and Rc. It may be considered as a measure of the error in the correction
to R~ since this is the largest correction, and hence, is expected to have the largest error. Simi-
larly, we may define the fractional residual ¢ =§ /Rc, which may be considered a measure of the
fractional error in the correction to Rc.

If we have a number of such paired sourcé measurements, the best values of the parameters
in equation 11 are those which make £ €2 a minimum:

5617 26’:0

E €2 =0, etc.

To

Y
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One-parameter Case

For the case where only two terms of equation 11 are retained, giving equation 4, the evaluation
of the parameter 7 by the least-squares method proceeds as follows:

€. b _ ‘A +N'Bg—N'¢c
Re Rc

_Np+Npg -Ne —-b

Re
_Ra +Rp—Rc —b+7(Rp2 + RE? “Rc® —b)
= RC
_D+1E
" “he

where D =RA+RB—Rc —b

E =Rp* +Rp? ~R¢?
E €= E —1—(D-v-'rE)2
RC2
1 2 2p2
= E' = (D? + 27DE +72E?)
Rc

D? DE E?
- —— - 72 —_—
ZWRC2 +2 72 Rcz” Re?

=G+ 2rH + 2L

where

The condition for best fit is
2
€ =0=2H+ 27L

whence: 7 =—H/L) (12)
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Two-parameter Case
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For the case where three terms of equation 11 are used:

N=R+7R®*+vR3 13)

the least-squares evaluation of the two parameters follows:

where

_RA+Rgp—Rc b+ 7(Rp? + Rg? —Rc%) +v (Rp® + RB® —Rc’)
Rc

€

_D+7E +oF

Rec
D =Rp +Rg—Rc —b
E =RA’+RB’—-Rc’

F =Ry’ +Rp*—RC®

Ze’iqn—!é;m+TE+vF)’

where

-y (D? + 27DE 4+ 20DF + 270 EF +7 2E? + v ?F?)
Rcz

2%34-21 %+ﬁ+@%+£%+i%

=G+ 2/H + 207 + 270K + 7L + v M

-__r
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The condition for best fit is:

O Y e?=0=2H+ 20K+ 27L

oT
) € =0=27 + 27K+ 2vM
ov

L Solving these simultaneous equation yields:

7 = (JK — HM)/(LM — K?)
v = (HK - JL)/(LM — K?) (14)

Three-parameter Case

The derivation of the method for the case where three parameters are used
N=R+7TRZ+vR*+¢$R* - (15)

proceeds similarly. One obtains three simultaneous equations in three unknowns, whose solution
yields the desired values. The solution is straightforward, but the computation is somewhat longer
than in the two-parameter case, especially since the solution of simultaneous equations containing
more than two unknowns is somewhat involved. Consequently, the two-parameter case is probably
the most satisfactory for routine practical use. Only if one needs high accuracy and the experimental
measurements have been made with a compatible degree of precision, or if the fractional corrections
are quite large (~50%) should it be necessary to invoke additional parameters. Obviously the method
can be extended to any number of parameters.

Significance of the Parameters

It is customary to consider the coincidence losses of a counter in terms of quantities called the
resolving time, the insensitive time, and the dead time. The resolving time is defined as the minimum
interval between two events which can both be registered by the instrument. The insensitive time is
the interval following a recorded event during which the instrument is incapable of recording another
event. The dead time is a quantity peculiar to Geiger-Mueller counters, and is the interval following
a discharge during which the tube is incapable of producing an electron avalanche.

The insensitive time is not a property of the instrument, but of a particular event recorded by
the instrument. With practically all types of counters, this quantity is not a constant, but may be
different for different events. For example, the insensitive time of a Geiger-Mueller counter dis-
charge may be shortened by the occurrence of another discharge a short time previously, %,%,% or
it may be lengthened by the occurrence of an unrecorded discharge near the end of the interval, The
insensitive time of a pulse in an alpha particle counter may depend on the length and position of the
track of the particle. I the insensitive time had a constant value, the resolving time would have this
same value. But, in view of the variability of insensitive times, the simple definition for resolving
time given has no clear meaning. Nevertheless, it is desirable to retain the idea of the resolving
time as a characteristic of the instrument, in the sense that the insensitive time is a characteristic

of an individual event.

Equations 1 and 2 are derived theoretically from certain physical assumptions, among which is

y that of a constant insensitive time or resolving time,7. The parameter has the same meaning in other
approximate equations, such as equations 3 and 4. Since the empirical equation 11 becomes essen-
‘-‘ tially equivalent to these equations at very low counting rates, we may call 7 in the latter also the
Vi resolving time. Physically, it is the limiting average value of the insensitive time as the counting

rate approaches zero. With Geiger-Mueller counters, the insensitive time is constant at very low
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rates, but with proportional counters or counting ionization chambers, the insensitive time varies,
so the average is specified. Mathematically, the resolving time may be defined as

. z[dngR)] R -0 =_[d(1;NN)} N =0

The parameters v,¢, . . . . of equation 11 have no simple physical significance, but are merely
constants employed to correlate the experimental observations.

The parameter 7, being the resolving time, has the dimension time and is always positive. The
parametersv,¢, . . . . have the dimensions time?, time®, . .. ., and may have either sign.

The discussion thus far has been confined to counting instruments. The method is equally ap-
plicable to some other types of measuring instruments which do not count. All radiation measuring
instruments are expected to deviate increasingly from linearly as the radiation intensity increases.
Examples to which the method can be applied are Lauritsen quartz-fiber electroscopes, high pres-
sure gamma-ray ionization chambers, beta-ray ionization chamber, DC amplifier assemblies,
photocells, etc. In such cases, the notion of a resolving time no longer applies, and it is more
logical to rewrite equation 11 as

I=M+aM?+bM3+cM¥+..... (16)

where M and I are the measured and true intensities respectively.

Once the parameters have been evaluated for a particular instrument by the method described,
subsequent measurements made with the instrument can be corrected by the use of the corresponding
equations 4, 13, 15 . . . . . The coincidence correction should be added before subtracting the back-
ground, especially if both are large. To facilitate the application of corrections, one may employ a
graph or table showing the correction as a function of the recorded rate.

APPLICATION OF THE METHOD

Procedure for Taking Data

The experimental part of the determination of coincidence corrections of an instrument consists
of taking a series of sets of paired source measurements. Each set is comprised of four measure-

ments involving two approximately equal sources: Ra, Rp, Rc and b. The series should contain three

or more sets, with counting rates covering the range of the instrument for which the corrections are
desired.

The procedure for taking a set of measurements is discussed, Sources and counting conditions
are chosen which will give the desired counting rates. With many instruments the counting rate can
be adjusted by varying the distance between source and detector, or by inserting suitable absorbers.
In order to eliminate possible changes due to variations in geometry, a dummy source should occupy
the place of each active source when the latter is not in position. The order of measurements is:

1) Place both dummies in position. Measure b.
2) Replace dummy A by active source A. Measure Rp.

3) Replace dummy B by source B, with care not to disturb the position of source A.
Measure Rg.

4) Replace source A by dummy A, with care not to disturb the position of source B,
Measure Rp.




MDDC - 905 {9

The sequence is illustrated in the figure below, where Sz and Sp are the active sources and
Dy and Dp the dummies:

o: RA II: Rg IV : Rp

It is generally desirable to count R, RB, and Re for equal periods of time. In this manner, one
can obtain ihe greatest statistical accuracy for a given total number of counts.! This is desirable
with instruments such as Geiger-Mneller counters whose lifetime is a function of usage. The great-
est statistical accuracy for a given total expenditure of time is obtained when:

tA:tB:tc:tb=\JR‘AzV—R‘B:\/%:\/'I:zlzlz\/;':WRA

However, the loss in accuracy by making ty =tg = t¢ is slight, so even for instruments which
are not damaged by usage, the convenience of using equal counting periods is sufficient to justify it
It is also desirable to make tp greater than indicated by this ratio, since a more exact value of th..
background is a useful indication of whether the instrument is functioning properly.

The counting time necessary for each set depends on the accuracy required in the corrections,
and may be estimated as discussed. Consider an instrument for which equation 4 holds, and 7 has a
value of approximately 10-° minute. We wish to determine 7 from a single set of paired source
measurements using equation 9, the counting rates being approximately 1000, 1000, and 2000 per
minute. We require an accuracy (fractional probable error) of 0. 5% in conected measurements at
2000 ¢/m. The coincidence correction at this rate is approximately 40 c/m, and this quantity must
be known with an accuracy of 10 ¢/m, or 25% of its value. This means that 1 must be known with an
accuracy of 25% , which in turn means that D { = Ry + Rg —~ R —b) must also have an accuracy of
25%. Since D=20 c/m, its probable error must be 5 ¢/m. The probable error in D is equal to

Fn L Be (B g gy TG
0.6745 { tB tC tb 72 0.6745 n

when the counting times are egqual. From this it follows that t = 73 minutes. The general formula
for the counting interval is:
8K*? 3.64

U= PPRG T Dl an

where t =ty =tg =tc =required counting interval
P = {ractional probable error required at R = R
K =0.6745 = factor used in computing probable errors,
(If it is desired to express P in terms of some other measure of

deviation than the probable error, the corresponding value of K
must be used instead.)

e

It is to be noted that the time requirement is independent of the resolving time. ¥
Table 1 has been prepared.

rom equation 17,

In cases where equation 4 does not hold, and the method described herein is to be used instead, we
may imagine each set of paired source measurements as establishing a point on the correction curve,
Hence, the same considerations apply, and equation 17 and Table 1 can be used as a general guide in
paired source measurements. Thus, when a series of such measurements is made, each set should
contain approximately the same total nuwwber of counts.
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Table 1. Length of counting interval t in minutes required for a given
fractional probable error P for various combined source counting rates Rc
in counts/minute.

ROE 5% 2% 1% 0.5% 0.2%  0.1%
1,000 1.5 9.1 36 146 910 3640
2,000 0.7 4.6 18 73 455 1820
5000 0.3 1.8 7.3 29 182 728

10,000  0.15 0.9 3.6 15 01 364
20,000 0,07 0.5 1.8 7.3 46 182
50,000  0.03 0.2 0.1 2.9 18 73
100,000  0.015 009 - 0.4 1.5 9.1 36
200,000  0.007  0.05 0.2 0.7 4.6 18
500,000  0.003  0.02 0.07 0.3 1.8 7.3
1,000,000  0.001  0.01 0.04 0.15 0.9 3.6

Table 2. Paired source measurements on Geiger-Mueller counter. Argon alcohol-
filled, bell type, mica window tube with self -quenching circuit and Offner scaler.

No. Rp (c/m) Rp(c/m) R (c/m) b 7, (min) 8(c/m) € (%)
I 2334 2485 4750 30 3.6 x10°¢ -6 -0.13

I 3077 3155 6133 28 3.9x10°® — 4 -0.07
m 3089 3116 6134 28 2.3x10°¢ —33 -0.54
v 37217 3696 7293 33 3.8 x 10-¢ -9 -0.12
A\ 3779 3692 7324 29 4.6 x10-8 +12 +0.16
VI 5452 5356 - 10505 33 5.2 x 10~° +56 + 0.53
v 5334 5411 10508 34 3.9 x 10-¢ —14 -0.13

Result of computation: T = 4.12 x 10~® min, and N =R + 7R%
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Table 3. Paired source measurements on alpha counter. Air-filled, parallel-plate
ionization chamber with linear pulse amplifier and Offner scaler.

No. Ry (c/fm) Rpfc/m) Rcl/m) b 7y (min) slc/m) (%)
I 294.4 313.4 603.4 2.0 13x 108 +0.6 +0,10

11 546.5 538.2 1076.6 2.0 11 x 10-° +0.4 +0.04
m 736 725 1450 2 9x107® -2 —-0.14
v 1323 1143 2436 2 9.7 x 10~ -18 -0.74
\' 2459 2514 4782 2 17.9x 10-¢ +13 +0.27
Vi 4454 ©4327 8131 2 23.5 x 10°° +1 +0.01
vii 5924 6245 10860 2 29.8 x 10°° -1 —0.06

Result of computation: 7 = 8,20 x 10-® min, v = 1,147 x 10~°® min®, and N =R + 7R? + vR?

Table 4, Paired source measurements on alpha counter. Nitrogen-filled, parallel-plate
ionization chamber with high-frequency amplifier and Offner scaler.*

No. Rpf(e/m) Rglc/m) Rcl/m) b 71 (min) 5(c/m) € (%)
I 41,287 . 41,111 81,094 2 4,10 x 1077 +70 +0.09
)1 80,308 70,495 145,492 3 5.44 x 10~7 -135 -0.09

oI 108,794 123,160 216,621 2 7.73 x 10-7 +74 +0.03

Result of computation (see Table 8); r = 1,814 x 1077 min, v = 1.662 x 1072 min®, and
N =R + 7R? + vR®

*The losses in this instrument occur chiefly in the scaler, not in the chamber or
amplifier,

Table 5. Paired source measurements on Geiger-Mueller counter.* Hydrogen-filled,
thin-walled glass tube (Eck and Krebs), with Neher-Harper quenching circuit and
scaler. Department of Chemistry, University of Wisconsin, June 1942,

No. RA(¢c/m) Rpf(c/m) R (c/m) b 1, {min) o (c/m) (%)
1 579 647 201 16 13 x10-® +1 40,06
I 2,054 2,491 4,386 18 11.0 x 10-¢ +39 +0.88
Iz 5,560 7,090 11,960 20 . 10.8 x 107° +12 40,10
v 7,320 9,970 16,120 20 10.6 x 107¢ +66  +0.41
v 17,880 18,460 33,100 20 7.4 x 10-% -470 -—1.42
Vi 28,800 32,600 53,700 - 6.3 x 10~ 4630  +1.18
viI 53,500 58,200 93,200 - 7.6 x 10-¢ —~430 -0.47
VII 65,700 717,400 114,000 - 10.8x 107 4200 +0.18
Result of computation: 7= 1.217 x 10~* min, v = —8.76 x 10~ min?, ¢ = 5.29 x 10~** min®,

and N =R + TR + v R® + o R*.
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The choice of counting rates for the various sets of paired source measurements can be made
from the following considerations. The Rg values should be fairly evenly distributed over the useful
range of the instrument. The maximum useful rate of a counter for general purposes may be con-
sidered to be that for which the coincidence loss is about 10 or 20 per cent. Some Geiger-Mueller
counters, however, have lower useful limits because high rates may permanently alter the tube
characteristics. Since sets with low values of Rc require long counting intervals and enter into
the computations with less weight than the higher sets, it is usually not profitable to use R¢ values
lower than that counting rate for which the coincidence correction is about 1 or 2%. If more than
3 or 4 sets are taken, duplication is permissible and has the advantage of indicating the consistency
and reproducibility of the data.

Sample Data

To illustrate the application of the method to actual counting instruments, several series of
data taken with various types of instruments are presented in Tables 2, 3, 4, and 5 together with
the results of the computations. The examples have been chosen to illustrate the one-, two-, and
three-parameter cases. ‘

Preliminary Examination of Data

In order to obtain an idea of the consistency of the data and to determine the number of param-
eters which should be computed, a preliminary examination of the data should be made by applying
equation 9 to each set of measurements. The value of 7 so obtained is designated as r,, since it
implies 2 one-parameter relationship, equation 4. The values of 7, are included in Tables 2 to 5.

If, as in Table 2, the variations in 7, show no trend with counting rate, and are no greater than
expected from statistical fluctvations, a one-parameter computation should suffice. The data of
Tables 3 and 4 indicate a progressive increase in 7, (the initial decrease in Table 3 is not signifi-
cant), indicating that two parameters should be computed. The data of Table 5 show a significant
decrease in 7, followed by a significant increase, suggesting that three parameters are probably
required to express the behavior of the counter,

Sample Computation

To demonsirate the manner in which the computations are set up and carried rnut, a typical
two-parameter computation is shown in Table 6. The computations involving a different number of
parameters follow similar patterns, except that with three or more parameters the solution of the
simultaneous eguations must be handled differently.

In the computation, sufficient significant figures should be carried to allow for the loss which
oceurs in solving the simultanecus equations. In the three-parameter computation of Table 5,
three significant figures were lost in the solution of the equaticns, so eight figures were carried
up to this point in order to give satisfactory accuracy in the result. Because of its length, this
computation was consequently quite tedious.

Checking the Computations

The computations should be checked against the data by computing the residual (§) and the
fractional residual (€ =3 /RC) for each set. If the values of € are all small,that is, of the order
of magnitude of P in eguation 17 and are distributed randomly in sign, it is assumed that tie
equation obtained satisfactorily represents the behavior of the instrument. If, however, the
values of € are all of the same sign, or show a significant trend, an error in the computations
is indicated, or an additional parameter must be computed.

In Tables 2, 3, 4, and 5, there are given for each set of measurements the values of § and €
computed from the result of the least-squares computation. In each case, these quantities are small
and of random sign, indicating that the equation oblained is adequate for the correction of measure-
ments made with the instrument.

[ U

i
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Table 6. Sample computation, illustrating method of laying out work for deter-
mining two parameters with aid of calculating machine. Data from Table 4.

Set No. I )i i)

Rp 41,287 80,308 108,794

Rp 41,111 70,495 123,160

Rc 81,094 145,492 216,621

b 2 3 2

'Rp+RB-Rc-b= D 1,302 5,308 15,331
Rp?  1.70461 x 10° 6.44937 x 10° 1.18361 x 10%°
Rg?  1.69011 x 10° 4.96954 x 10° 1.51684 x 10%°
Re?  6.57623 x 10° 2.11679 x 10 4.69246 x 10%°
Rp*+Rp?—Re? = E —3.18151x10°  —0.74901x10°  —1.99201 x 10*
Rp®  7.03782x 10**  5.17936 x 10 1.28770 x 105
Rg®  6.94821 x 10"  3.,50328 x 10 1.86814 x 10%°
Rc®  5.33203x 10"  3.07976 x 10®  1.01649 x 10
Rp®+Rp*~Rc® = F  —3.93432x 10"  -2.21150 x 10**  —7.00903 x 10'®
DE/Rc? = V  —6.29960 x 10  —2.44463 x 10°  —6.50821 x 10°
DF/Rc? = W —7.78970 x 107  —5.54540 x 10°  —2.28996 x 10°
EF/Rc? = X 1.90338 x 10 1.01852 x 10"  2.97542 x 10'
E*/Rc? = Y 1.53918 x 10° 4.48996 x 19° 8.45636 x 10°
F?/Rc? = Z 2.35376 x 10 2.31044x 10  1.04692 x 10!

Calculation of data in Table 6:

X V= H
z W=7
z = K
Z2Y=1L
2 Z= M
JK

HM
JK-HM

—-9,58280 x 10°
-2.92240 x 10°
4,18428 x 10'®
1.44855 x 10
1.30150 x 10*

—1,2281 x 10*
—-1.24720 x 10%®
+2.439 x10%

HK
JL
HK-JL

LM
K?
LM-K?
JK-HM _
LM-K 7
HK-JL _
LM-K ~

—4,00971 x 10*®
—4.23324 x 10*°
+2.2353 x 108

+1.88529 x 103
+1.75082 x 10%*
+1,3447 x 10¥

+1.814 x 1077

+1.662 x 10712

[13
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Figure 1. Coincidence corrections for alpha counter. Data of Table 3.
A: Found by present method. B: Previously assumed for this type of instrument.,

Graphical Illustration of Results

For two of the examples considered, the fractional correction has been plotted as a function of
the recorded rate.

Figure 1 shows the behavior of the alpha counter from which the data of Table 3 were taken. For
comparison, the dash line indicates the previously assumed losses of such instruments, 0.8% per
1000 counts/minute,

The difference between the two curves indicates the necessity of determining coincidence cor-
rections separately for every instrument.

In Figure 2 the continuous line shows the results of the three ~-parameter computation based on
the Geiger-Mueller counter data of Table 5. The dash line is the result of the independent analysis
of the same data by the method of successive graphical approximations.?2 The two curves coincide
within the accuracy of the measurements, indicating the validity of both methods. The dash curve
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Figure 2. Coincidence corrections for GM counter. Data of Table 5.
A: Found by present method. B: Found by method of successive graphical approximations,

is perhaps the better of the two since it yields a value for £ ¢ 2 of 0.00005, whereas that obtained by
the present method is 0.00046. A fourth parameter would presumably reduce the difference
between the two curves. '

To facilitate the correction of counter data, it is often convenient to use a graph showing the
correction (N—R) as a function of the recorded rate R, instead of applying the correction equation
to the individual results. The plot may be made on Cartesian or logarithmic coordinate paper,
depending on the range of values. Such plots are shown in Figures 3 and 4.
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